• Title/Summary/Keyword: 등밀도면 재구성

Search Result 3, Processing Time 0.021 seconds

Iso-density Surface Reconstruction using Hierarchical Shrink-Wrapping Algorithm (계층적 Shrink-Wrapping 알고리즘을 이용한 등밀도면의 재구성)

  • Choi, Young-Kyu;Park, Eun-Jin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.511-520
    • /
    • 2009
  • In this paper, we present a new iso-density surface reconstruction scheme based on a hierarchy on the input volume data and the output mesh data. From the input volume data, we construct a hierarchy of volumes, called a volume pyramid, based on a 3D dilation filter. After constructing the volume pyramid, we extract a coarse base mesh from the coarsest resolution of the pyramid with the Cell-boundary representation scheme. We iteratively fit this mesh to the iso-points extracted from the volume data under O(3)-adjacency constraint. For the surface fitting, the shrinking process and the smoothing process are adopted as in the SWIS (Shrink-wrapped isosurface) algorithm[6], and we subdivide the mesh to be able to reconstruct fine detail of the isosurface. The advantage of our method is that it generates a mesh which can be utilized by several multiresolution algorithms such as compression and progressive transmission.

Surface Reconstruction from Cross-Sectional Images using the Shrink-Wrapping Algorithm (Shrink-Wrapping 알고리즘을 이용한 단층영상으로부터의 표면 재구성)

  • Park, Eun-Jin;Choi, Young-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching cube algorithm, our method does not extract iso-density surface(isosurface) directly from the voxels but calculates the iso-density point(isopoint) first. After building the relatively coarse initial mesh by the Cell-boundary algorithm approximating the isosurface, it produces the final isosurface by iteratively shrinking and smoothing the initial mesh. Comparing with the Marching Cube algorithm, our method is robust and does not make any crack in resulting surface model. Furthermore, the proposed method surmounts the O(1)-adjacency limitation of MC in defining the isopoints by permitting the O(2) and O(3)-adjacent isopoints in surface reconstruction, and can produce more accurate isosurface. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images.

Iso-density Surface Modelling using Hierarchical Shrink-Wrapping Technique (계층적 표면축소 기법을 이용한 등밀도면 모델링 방법)

  • Park, Eun-Jin;Choi, Young Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.230-233
    • /
    • 2009
  • 본 논문은 볼륨 데이터를 입력받아 계층성을 지원하는 등밀도 표면을 재구성하는 방법을 제안한다. 제안된 방법은 먼저 입력 볼륨 데이터에서 볼륨 피라미드를 구성하고 해상도가 최저인 피라미드의 최상단 볼륨에서부터 셀경계표현 방법을 이용하여 조악한 초기 메쉬를 생성하며, 이 메쉬를 표면축소기법을 사용하여 반복적으로 변형하여 O(3)-인접성 조건하에서 추출한 등밀도점을 잘 근사할 수 있도록 한다. 제안된 방법은 생성되는 표면이 압축이나 점진적인 전송 등과 같은 다중 해상도 알고리즘에 활용될 수 있다는 장점이 있다.