• Title/Summary/Keyword: 등고선지도

Search Result 2, Processing Time 0.019 seconds

A risk analysis of water courses and landslide using contour maps -Focusing on Mt. Seonggo in Cheonan City- (등고선지도를 이용한 수로 및 산사태 위험 분석 -천안의 성거산을 중심으로-)

  • Kim, Sae-Keun;Kim, Dong-Keun;Maeng, Seung-Ryol
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.289-296
    • /
    • 2012
  • Due to the topographical and climatic features of Korea, there is a strong possibility of a landslide. Recently, many landslides, caused by the improper land development, frequently occured at the mountain area every summer. Cheonan has been recognized to be relatively safe against landslide, but with the increased risk factors, systematic analysis of the landslide is required. In this paper, the topographical features of Mt. Seonggo in Cheonan City were extracted using contour maps, and water courses and basin areas in heavy rain were computed using the results. Conclusively, Mt. Seonggo areas were relatively safe in the view points of the length of water courses and rain-inflow, but in case of some narrow areas, sustainedly observation was required. Meanwhile, a contour map is proper to analyze the risk of landslide in the 1'st level in that it is more cost effective than other types of digital map.

The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

  • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-42
    • /
    • 2012
  • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.