• Title/Summary/Keyword: 등가 물성치

Search Result 46, Processing Time 0.023 seconds

A Study on Prediction of Effective Material Properties of Composites with Fillers of Different Sizes and Arrangements (강화재의 크기 및 배치에 따른 복합재의 등가 물성치 예측에 대한 연구)

  • Lee, J. K.;Kim, J. G.
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • The validity of Eshelby-type model with Mori-Tanaka's mean field theory to predict the effective material properties of composites have been investigated in terms of filler size and its arrangement. The 2-dimensional plate composites including constant volume fraction of fillers are used as the model composite for the analytical studies, where the filler size and its arrangement are considered as parameters. The exact effective material properties of the composites are computed by finite element analysis(FEA), which are compared with effective material properties from the Eshelby-type model. Although the fillers are periodically or randomly arranged, the average Young's moduli by Eshelby-type model and FEA are in good agreement, specially for the ratio of specimen size to filler size being smaller than 0.03. However, Poisson's ratio of the composite by the Eshelby-type model is overestimated by $20\%$.

Determination of equivalent elastic modulus of shotcrete-tetragonal lattice girder composite (사변형 격자지보재-숏크리트 합성부재의 등가물성 결정 기법)

  • Kang, Kyung-Nam;Song, Ki-Il;Kim, Sun Gil;Kim, Kyoung Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Steel set is a structure that stabilize the NATM tunnel until the installation of shotcrete, and it is combined after the shotcrete is installed to improve stability. In this study, determination approach for the equivalent elastic modulus of shotcrete-lattice girder composite is newly suggested for tunneling simulation. Also, a method was presented to calibrate the equivalent elastic modulus through the comparison of the full 3D model and equivalent model. When the conventional equivalent elastic modulus is used for shotcrete-lattice girder composite, the flexural strength of equivalent model is 130% smaller than that of full 3D model. Equivalent elastic modulus is adjusted considering the error of flexural strength. It is found that the error of flexural strength obtained from adjusted equivalent model using adjusted equivalent elastic modulus is reduced less than 1%.

Crimp Angle Dependence of Effective Properties for 3-D Weave Composite (굴곡각에 따른 3차원 평직 복합재료의 등가 물성치 예측)

  • Choi, Yun-Sun;Woo, Kyeongsik
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • In this study, geometric modeling and finite element analysis of 3-dimensional plain weave composite unit cell consisting of 3 interlaced fiber tows and resin pocket were performed to predict effective properties. First, tow properties were obtained from micro-mechanics finite element unit cell analysis, which were then used in the meso-mechanics analysis. The effective properties were obtained from a series of unit cell analyses simulating uniaxial tensile and shear tests. Analysis results were compared to the analysis and experimental results in the literature. Various crimp angles were considered and the effect on the effective properties was investigated. Initial failure strengths and failure sequence were also examined.

Finite Element Eigen Analysis of Undamped Beam Structure with Composite Sections (복합단면을 갖는 비 감쇠 보 구조물의 유한요소 고유치 해석)

  • Park, Keun-Man;Cho, Jin-Rae;Jung, Weui-Bong;Bae, Soo-Ryong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.691-697
    • /
    • 2007
  • Numerical eigen analysis of beam-like structure can be easily and effectively done by various conventional beam theory-based methods. However, in case of the structures composed of composite-sectioned beams, the application of conventional numerical methods requires one to derive both equivalent material and geometry properties. In the present paper, these equivalent properties are derived by the transformed section method and the test FEM program is coded. The numerical accuracy of the proposed method is verified through the comparison with the ANSYS 3-D model.

Study on equivalent material property of Tetra Chiral Honeycomb structure using finite element method (유한 요소 해석을 이용한 Tetra Chiral Honeycomb 구조의 등가 물성치에 대한 연구)

  • Park, Jung-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.190-194
    • /
    • 2016
  • 자연에서 안정적이고 경제성이 높은 구조로 벌집 구조가 많이 언급이 된다. 이러한 벌집 구조의 특징으로 인해 많은 공학자들이 그 구조를 모방하여 적용하고 있다. 벌집 구조에도 다양한 종류가 존재하지만 그 중 음의 푸아송 비(Poisson's ratio)를 갖는 Chiral Honeycomb 구조가 많이 연구되고 있다. 푸아송 비는 물질이나 구조의 고유한 물성치로 종, 횡 방향의 변형율로 나타내며 이 값으로 외부 조건으로부터의 변형을 예측 할 수 있게 된다. 흔히 푸아송 비는 양의 값을 가지지만 Chiral Honeycomb 구조는 음의 푸아송 비를 가져 기존의 구조와는 다른 기계적 성질을 가지게 된다. 이 논문에서는 Chiral Honeycomb 구조 중에서도 4개의 관절(ligament)를 가지는 Tetra Chiral Honeycomb 구조에 대해 EDISON용 CASADsovler 프로그램을 통해 유한 요소 해석을 수행하여 등가 물성치를 구해 보았으며 기존 실험의 값들과 비교를 통해 해석을 위해 필요한 적절한 대표 체적에 대해 확인해 보았다.

  • PDF

Equivalent Mechanical Property for Stress Analysis on Lined Pipe (Lined Pipe의 응력해석을 위한 등가 물성치 계산)

  • Choe, Jae-Seung;Jeong, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.445-451
    • /
    • 2002
  • The refractory-lined pipe is used to protect the system from high-temperature of the internal flow. The property of the refractory has an effect upon the stress analysis for fluid catalytic cracking(FCC) unit piping design. The equivalent elastic modulus and density considering steel and refractory must be applied in the stress analysis of the system. In the research, the theoretical method to obtain the value of the equivalent property is introduced and then the parametric analysis is carried out to understand the characteristic of the material properties, and the stress analysis is performed with reactor, the part of FCC unit.

Study on the Static and Dynamic Stiffness Coefficients of Rubbers Connector by Using Finite Element Method (유한요소법을 이용한 고무 연결요소의 정-동강성 계수에 관한 연구)

  • 박노길;박성태
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.103-113
    • /
    • 1995
  • Since the mechanical properties of the rubber connectors used in the vehicle structures are sensitive on the dynamic characteristics of the system, they must be exactly evaluated. In this paper, both finite deformation theory and Hookean model are considered to calculate the stiffness coefficients of rubber connectors. An expert system is developed by using finite element method. When the equivalent stiffness coefficients on the same kinds of isolators used in actual vehicles were emperically examined, the results were largely dispersed due to the lack of the quality control on the material properties. To compensate the errors caused by the mathematical modeling and the mechanical properties, a practical method which identifies the shear and bulk moduli of rubber with the experimented overall force-deformation curves is suggested and applied to the engine isolators of vehicle.

  • PDF

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.

Equivalent Design Parameter Determination for Effective Numerical Modeling of Pre-reinforced Zones in Tunnel (터널 사전보강 영역의 효과적 수치해석을 위한 등가 물성치 결정 기법)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2006
  • Although various methods for effective modeling of pre-reinforced zones have been suggested for numerical analysis of large section tunnels, tunnel designers refer to empirical cases and literature reviews rather than engineering methods because ones who use commercial programs are unfamiliar with a macro-scale approach in general. Therefore, this paper suggests a simple micro-scale approach combined with the macro-scale approach to determine equivalent design parameters for effective numerical modeling of pre-reinforced zones in tunnel. This new approach is to determine the equivalent stiffness of pre-reinforced zones with combination of ground, bulb, and steel in series or/and parallel. For verification, 3-D numerical results from the suggested approach are compared with those of a realistic model. The comparison suggests that two cases make best approximation to a realistic solution: One is related to the series-parallel stiffness system (hereafter SPSS) in which bulb and steel are coupled in parallel and then connected to the ground in series, and the other is the series stiffness system (hereafter SSS) in which only bulb and steel are coupled in series. The SPSS is recommended for stiffness calculation of pre-reinforced zones because the SSS is inconvenient and time-consuming. The SPSS provides slightly bigger vertical displacement at tunnel crown in weathered rock than other cases and give almost identical results to a realistic model for horizontal displacement at tunnel spring line and ground surface settlement. Displacement trends on weathered rock and weathered soil are similar. The SPSS which is suggested in this paper represents the behavior mechanism of pre-reinforced area effectively.

  • PDF

Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material (기능경사 소재 등가 물성치 예측을 위한 균질화 기법의 특성분석을 위한 수치해석)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Shin, Dae-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Graded layers in which two different constituent particles are mixed are inserted into functionally graded material such that the volume fractions of constituent particles vary continuously and functionally over the entire material domain. The material properties of this dual-phase graded region, which is essential for the numerical analysis of the thermo-mechanical behavior of FGM, have been predicted by traditional homogenization methods. But, these methods are limited to predict the global equivalent material properties of FGMs because the detailed geometry information such as the particel shape and the dispersion structure is not considered. In this context, this study intends to investigate the characteristics of these homogenization methods through the finite element analysis utilizing the discrete micromechanics models of the graded layer, for various volume fractions and external loading conditions.