• Title/Summary/Keyword: 등가휨강도

Search Result 32, Processing Time 0.024 seconds

Modified Rectangular Stress Block for High Strength RC Columns to Axial Loads with Bidirectional Eccentricities (2축 편심 축력을 받는 고강도 콘크리트 기둥의 수정 등가응력블럭)

  • Yoo, Suk-Hyeong;Bahn, Byong-Youl;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.335-343
    • /
    • 2003
  • In the previous experimental study, it is verified that the ultimate strain of concrete (${\varepsilon}$$_{cu}$=0.003) and coefficient of equivalent stress block (${\beta}$$_1$) can be used for the analysis of RC beams under biaxial and uniaxial bending moment. However, the characteristics of stress distribution of non rectangular compressed area in the RC columns are different to those of rectangular compressed area. The properties of compressive stress distribution of concrete have minor effect on the pure bending moment such as beams, but for the columns subjected to combined axial load and biaxial bending moment, the properties of compressive stress distribution are influencing factors. Nevertheless, in ACI 318-99 code, the design tables for columns subjected to axial loads with bidirectional eccentricities are based on the parameters recommended for rectangular stress block(RSB) of rectangular compressed areas. In this study the characteristics of stress distribution through both angle and depth of neutral axis are observed and formulated rationally. And the modified parameters of rectangular stress block(MRSB) for non rectangular compressed area is proposed. And the computer program using MRSB for the biaxial bending analysis of RC columns is developed and the results of MRSB are compared to RSB and experimental results respectively.

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

An Experimental Study on the Ductility Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 연성능력에 관한 실험적 연구)

  • 김용부;고만영;오명석
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1998
  • 본 연구는 고성능 철근콘크리트 보의 연성능력에 관한 실험이다. 실험변수로는인장철근비( )와 하중재하형태(1점가력과 2점가력)가 있다. 콘크리트의 실린더 압축강도가 800-900㎏/㎠, 슬럼프 20∼25㎝ 및 슬럼프 플로우가 60∼70㎝인 고성능 철근콘크리트 보의 휨 실험 결과,고성능 콘크리트는 일반강도 콘크리트보다 취성적인 성질을 나타냈으며, 이러한 성질은 고성능 콘크리트의 연성능력을 감소시켰다. 고성능철근콘크리트의 경우 등가응력블록 변수는 MacGregor블록이나 New Zealand 규준을 사용하는 것이 바람직하다. 또한, 극한 곡률을 구할때는 cu= 0.0042값을 사용하는 것이 타당하다고 사료된다. 고성능 철근콘크리트 보의 경우, 현재 ACI 규준의 철근비에서 허용하는 2 및 4 이상의 연성지수 확보는 각각 '/ 0.30 범위에서 정적하중 상태의 경우 철근비가 - '=0.60 b이하에서 가능하고 휨 부재의 모멘트 재분배를 위한 경우는 철근비를 - '=0.33 b이하로 낮추어야 할 것으로 판단된다.

Flexural Characteristics of Model Composite Deck Fabricated with VARTM (진공성형 제작 모델 복합소재 바닥판의 실험적 휨 거동특성 분석)

  • Lee Sung-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.417-426
    • /
    • 2005
  • Recent days composite bridge dock is gaining attraction due to many advantages such as light weight, high strength, corrosion resistance, and high durability. In this study, composite deck models of hat, box and triangular section type wore fabricated with VARTM Process. For these models, three point flexural tests wore carried out both in strong and weak axis. The experimental results were compared with each other to determine efficient section profile. It has been demonstrated that composite sandwich deck has strong potentials to be used as bridge deck in the new construction and rehabilitation works.

An Experimental Study on the Flexural Stiffness and Plastic Hinge Ratation Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 휨강성 및 소성힌지의 회전능력에 관한 실험적 연구)

  • 고만영;김상우;김용부
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.93-100
    • /
    • 1998
  • This paper presents a study on the flexural stiffness, plastic hinge length and plastic hinge rotation capacity of reinforced high performance concrete beams. 15 beams with different strength of concrete, reinforcement ratio and the pattern of loadings were tested. From the test results of reinforced normal strength concrete beams and reinforced high performance concrete beams with the concrete which has cylinder compressive strength of 700kg/${cm}^2$, slump value of 20~25cm and slump-flow value of 60~70cm. It is found that an extreme fiber concrete compressive strain of ${\varepsilon}_{cu}=0.0047$ may be used in ultimate curvature computations of reinforced high performance concrete beams. An empirical equation is proposed to estimate the effective moment of inertia. length and rotation capacity of plastic hinge of simply supported reinforced high performance concrete beams. The estimated deflections using this equation agree well with the experimental values.

Chloride Penetration Resistance and Flexural Behavior of Hybrid Organic Fibers Reinforced Concrete (유기계 섬유로 하이브리드 보강된 콘크리트의 휨 거동 및 염분침투저항성)

  • Kim, Seung Hyun;Kang, Min Bum;Lee, Dong Wook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.105-115
    • /
    • 2015
  • In this study, to understand mechanical characteristic of hybrid reinforced concrete by PVA-fiber 6 mm and PP-fiber 50 mm, which are organic fiber replaced macro-fiber with PP-fiber, four mixed Hybrid Organic Fibers Reinforced Concrete (HFRC) is compared with one mixed plain concrete without fiber reinforcement. Volume portion of the fibers are limited under one percent. The result presents that hybrid reinforcement of the organic fibers cannot maximize stiffness and ductility behavior of the steel fiber reinforcement. however, in comparison to plain concrete, it is confirmed that meaningful relation between toughness index and equivalent flexural strength with advanced ductility behavior. Also, in the case of concrete hybrid reinforced by organic fiber, when the volume portion of the fiber increases, ductility also increases. PP-fiber, which is macro fiber, has more effect on the flexural behavior of concrete than PVA-fiber, which is micro fiber, does. The result also shows that it decrease chloride penetration in chloride penetration test.

Toughness Index and Post-Crack Equivalent Tensile Strength of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 휨 인성지수와 균열 후 등가인장강도)

  • 박홍용;이태림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.593-596
    • /
    • 1999
  • Steel fibers are added to concrete to improve energy absorption, impact resistance and apparent ductility, and to provide crack resistance and crack control. This study is to investigate the toughness index and post-crack equivalent tensile strength of steel fiber reinforced concrete properties on the load-deflection behaviors of the steel fiber reinforced concrete beam model specimens.

  • PDF

Static Bending Strength Performance of Domestic Wood-Concrete Hybrid Laminated Materials (국내산 목재-콘크리트 복합적층재의 정적 휨 강도성능)

  • Byeon, Jin-Woong;Cho, Young-June;Lee, Je-Ryong;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • In this study, to develop the lattice materials with a low environmental load for restoring the destroyed forest, 7 types of wood-concrete hybrid laminated materials were manufactured with domestic four softwoods, three hardwoods and concrete, and the effects of density of wood species on static bending strength performances were investigated. Bending MOEs of wood-concrete hybrid laminated materials increased with increasing density of wood species on the whole, and the values were higher than that of concrete by hybrid-laminating woods on the concrete. It was found that the measure values of bending MOEs were slightly lower than the calculated values calculated using equivalent cross-section method from MOE of each laminae of hybrid laminated materials and the difference between them was less than 10%. Bending proportional limit stresses of hybrid laminated materials showed 1.2-1.6 times higher than that of concrete by hybrid-laminating. Bending strength (MOR) of hybrid laminated materials increased with the density of wood species. By hybrid-laminating, the MOR of concrete was considerably increased. Therefore, it is considered that wood-concrete hybrid laminated materials can be applied as a materials with a low environmental load and durability for ecological restoration.

Behavior of Circular Hollow Section R.C Member with Internal Corrugated Steel Tube (파형강관을 삽입한 중공원형단면 철근콘크리트 부재의 거동에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-Chil;Jo, Jae-Byung;Lee, Soo-Keun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.1 s.8
    • /
    • pp.123-131
    • /
    • 2003
  • An experiment was carried out to investigate the mechanical behaviour of the circular hollow section reinforced concrete member with internal corrugated steel tube. A specimen, 50cm in diameter and 340cm in length, was made and tested by 3 points bending. The test load was increased slowly (quasi static) to the failure or unacceptable deformation. During the test, lateral displacement at mid point and longitudinal displacement of extreme fiber on compressive and tensile side of the specimen were measured. The measured data were analysed and compared with calculated results for the equivalent member without inserted corrugated steel tube. The comparison shows that the flexural strength and ductility of hollow section reinforced concrete members can be improved by inserting corrugated steel tubes inside.

Effect of Partial Prestressing Ratio and Effective Prestress on the Flexural Behavior of Prestressed Lightweight Concrete Beams (프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부분 프리스트레싱비와 유효 프리스트레스의 영향)

  • Yang, Keun-Hyeok;Moon, Ju-Hyun;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The present investigation evaluates the flexural behavior of pre-tensioned lightweight concrete beams under two-point symmetrical concentrated loads according to the variation of the partial prestressing ratio and the effective prestress of prestressing strands. The designed compressive strength of the lightweight concrete with a dry density of 1,770 $kg/m^3$ was 35 MPa. The deformed bar with a yield strength of 383 MPa and three-wire mono-strands with tensile strength of 2,040 MPa were used for longitudinal tensile reinforcement and prestressing steel reinforcement, respectively. According to the test results, the flexural capacity of pre-tensioned lightweight concrete beams increased with the increase of the partial prestressing ratio and was marginally influenced by the effective prestress of strands. With the same reinforcing index, the normalized flexural capacity of pre-tensioned lightweight concrete beams was similar to that of pre-tensioned normal-weight concrete beams tested by Harajli and Naaman and Bennett. On the other hand, the displacement ductility ratio of pre-tensioned lightweight concrete beams increased with the decrease of the partial prestressing ratio and with the increase of the effective prestress of strands. The load-displacement relationship of pre-tensioned lightweight concrete beam specimens can be suitably predicted by the developed non-linear two-dimensional analysis procedure. In addition, the flexural cracking moment and flexural capacity of pre-tensioned lightweight concrete beams can be conservatively evaluated using the elasticity theorem and the approach specified in ACI 318-08, respectively.