• Title/Summary/Keyword: 등가탄성해석방법

Search Result 73, Processing Time 0.019 seconds

Seismic Vulnerabilities of a Multi-Span Continuous Bridge Considering the Nonlinearity of the Soil (지반 비선형성을 고려한 다경간 연속교의 지진취약도)

  • Sun, Chang-Ho;Lee, Jong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.59-68
    • /
    • 2010
  • Seismic performances of existing structures should be assessed with more accuracy for cost-effective retrofits. Existing bridges are assessed by the current guidelines in which a simple method has been adapted considering the technical level of engineers of the historical time of construction. Recently many probabilistic approaches have been performed to reflect the uncertainties of seismic input motions. Structures are modeled frequently with the neglection of soil foundations or modeled occasionally with elastic soil spring elements to consider the effect of the soil on the structural response. However, soil also shows nonlinearity under seismic events, so this characteristic should be reflected in order to obtain a more accurate assessment. In this study, a 6-span continuous bridge has been analyzed under various seismic events, in which the soil was represented by equivalent linear spring elements having different properties according to the intensities of the input motions experienced. The seismic vulnerabilities with respect to the failure of piers and the dropping of the super-structure were evaluated on the basis of the analysis results.

A Study on the Deformation Modulus for Tunnel Displacement Assessment in Multi-Jointed Rock Mass (다중절리 암반지층에서의 터널변위 산정을 위한 변형계수에 관한 연구)

  • Son, Moorak;Lee, Wonki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.17-26
    • /
    • 2017
  • Tunnel excavation in jointed rock mass induces a displacement along tunnel excavation line and its assessment is very important to ensure the stability of tunnel and a demanded space. Tunnel displacement is directly related to the deformation modulus of ground and therefore it is essential to know the value of the parameter. However, most rock masses where tunnels are constructed are generally jointed and it is difficult to find out the deformation modulus of jointed rock mass simply based on an homogeneous isotropic elastic medium because the deformation modulus is highly affected by joint condition as well as rock type. Accordingly, this study carried out extensive numerical parametric studies to examine the variation of deformation modulus in different joint conditions and rock types under the condition of tunnel excavation. The study results were compared with existing empirical relationships and also shown in the chart of deformation modulus variation in different jointed rock mass conditions.

Assessment of p-y Behaviors of a Cyclic Laterally Loaded Pile in Saturated Dense Silty Sand (조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가)

  • Baek, Sung-Ha;Choi, Changho;Cho, Jinwoo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.97-110
    • /
    • 2019
  • Piles that support offshore wind turbine structures are dominantly subjected to cyclic lateral loads of wind, waves, and tidal forces. For a successful design, it is imperative to investigate the behavior of the cyclic laterally loaded piles; the p-y curve method, in which the pile and soil are characterized as an elastic beam and nonlinear springs, respectively, has been typically utilized. In this study, model pile tests were performed in a 1 g gravitational field so as to investigate the p-y behaviors of cyclic laterally loaded piles installed in saturated dense silty sand. Test results showed that cyclic lateral loads gradually reduced the overall stiffness of the p-y curves (initial stiffness and ultimate soil reaction). This is because the cyclic lateral loads disturbed the surrounding soil, which led to the decrement of the soil resistance. The decrement effects of the overall stiffness of the p-y curves became more apparent as the magnitude of cyclic lateral load increased and approached the soil surface. From the test results, the cyclic p-y curve was developed using a p-y backbone curve method. Pseudo-static analysis was also performed with the developed cyclic p-y curve, confirming that it was able to properly predict the behaviors of cyclic laterally loaded pile installed in saturated dense silty sand.