• Title/Summary/Keyword: 등가선량

Search Result 146, Processing Time 0.025 seconds

Bolus Effect to Reduce Skin Dose of the Contralateral Breast During Breast Cancer Radiation Therapy (유방암 방사선치료 시 반대편 유방의 피부선량 감소를 위한 볼루스 효과)

  • Won, Young Jin;Kim, Jong Won;Kim, Jung Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.289-295
    • /
    • 2017
  • The aim of this study was to evaluate the dose comparison using Radon phantom with 5 mm and 10 mm tissue equivalent materials, FIF, Wedge(15, 30 angle) and IMRT, to reduce the skin dose of the contralateral breast during breast cancer radiation therapy(Total dose: 50.4Gy). The dose was measured for each treatment plan by attaching to the 8 point of the contralateral breast of the treated region using a optical-stimulated luminance dosimeter(OSLD) as a comparative dose evaluation method. Of the OSLD used in the study, 10 were used with reproducibility within 3%. As a result, the average reduction rates of 5 mm and 10 mm in the FIF treatment plan were 37.23 cGy and 41.77 cGy, respectively, and the average reduction rates in the treatment plan using Wedge $15^{\circ}$ were 70.69 cGy and 87.57 cGy, respectively. The IMRT showed a reduction of 67.37 cGy and 83.17 cGy, respectively. The results of using bolus showed that as the thickness of the bolus increased in all treatments, the dose reduction increased. We concluded that mastectomy as well as general radiotherapy for breast cancer would be very effective for patients who are more likely to be exposed to scattered radiation due to a more demanding or complex treatment plan.

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • 지영훈;이동한;류성렬;권수일;신동오;박성용
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.45-57
    • /
    • 1997
  • It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine, European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induces the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. For measuring the absorbed doses and the dose distribution of fast neutron beam, we used IC-17 and IC-18 ion chambers manufactured by A-150 plastic(tissue-equivalent material), IC-17M ion chamber manufactured by magnesium, TE gas and Ar gas, and RDM 2A electrometer. The magnitude of gamma-contamination intermingled with fast neutron beam was about 13% at 5cm depth of standard irradiated field, and increased as the depth was increased. At the central axis the maximum dose depth and 50% dose depth were 1.32cm and 14.8cm, respectively. The surface dose rate was 41.6-54.1% throughout the entire irradiated fields and increased as the irradiated fields were increased. Beam profile was that the horn effect of about 7.5% appeared at 2.5cm depth and the flattest at 10cm depth.

  • PDF

Photon Energy Dependence of the Sensitivity of LiF TLDs Loaded with Thin Material (얇은 박막을 얹은 TLD 반응감도의 광자 에너지에 대한 의존성)

  • Min Byongim J;Kim Sookil;Loh John J.K;Cho Young Kap
    • Radiation Oncology Journal
    • /
    • v.17 no.3
    • /
    • pp.256-260
    • /
    • 1999
  • Purpose : An investigation has been carried out on the factors which affect the response reading of thermoluminescent dosimeters (TLD-100) loaded with thin material in high energy Photon. The aim of the study was to assess the energy response of TLD-100 to the therapeutic ranges of photon beam. Materials and Methods : In this technique, TLD-100 (abbreviated as TLD) chips and three different thin material (Tin, Gold, and Tissue equivalent plastic plate) which mounted on the TLD chip were used in the clinical photon beam. The thickness of each metal plates was 0.1 mm and TE plastic plate was 1 mm thick. These compared with the photon energy dependence of the sensitivities of TLD (normal chip), TLD loaded with Tin or Gold plate, for the photon energy range 6 MV to 15 MV, which was of interest in radiotherapy. Results : The enhancement of surface dose in the TLD with metal plate was clearly detected. The TLD chips with a Gold plate was found to larger response by a factor of 1.83 in 10 MV photon beam with respect to normal chip. The sensitivity of TLD loaded with Tin was less than that for normal TLD and TLD loaded with Gold. The relative sensitivity of TLD loaded with metal has little energy dependence. Conclusion : The good stability and linearity with respect to monitor units of TLD loaded with metal were demonstrated by relative measurements in high energy Photon ($6\~15$ MV) beams. The TLD laminated with metals embedded system in solid water phantom is a suitable detector for relative dose measurements in a small beam size and surface dose.

  • PDF

Age comparisons of coastal sand dune stratum in Chollipo, Korea by altering preheat and cut-heat, and grain size distributions by OSL dating (예열 및 cut-heat 온도와 입자의 크기에 따른 천리포 해안사구 퇴적층의 OSL 연대측정 비교)

  • Bang, Jun-Hwan;Kim, Ki-Dong;Eum, Chul-Hun
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • The samples from coastal sand dune stratum in Chollipo were dated by Optically Stimulated Luminescence (OSL) with modified Single Aliquots Regeneration (SAR) method. It is possible to choose the OSL signals by thermal treatments such as preheat and cut-heat in SAR procedure. Preheat and cut-heat of $260^{\circ}C$ for 10 sec $-220^{\circ}C$ for 0 sec, and $270^{\circ}C$ for 10 sec $-270^{\circ}C$ for 10 sec were applied for estimation of equivalent dose of the samples. The OSL signals from different thermal treatment were used for OSL dating. Equivalent dose were estimated with 4 fractionated grain distributions with $75{\mu}m$, $150{\mu}m$ and $200{\mu}m$ sieves with above heating treatments. Consequently, the estimated dose were differently valued in sample sizes and applied heating treatments, different stratum ages were calculated. The ages from radiocarbon dating were compared with the OSL ages. The ages varying with grain sizes produce that the site sampled were formed with mixed soil sources.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Dose Evaluation at The Build Up Region Using by Wedge Filter (쐐기필터 사용에 따른 선량증가 영역에서 선량평가)

  • Kim, Yon-Lae;Moon, Seong-Kong;Suh, Tae-Suk;Chung, Jin-Beom;Kim, Jin-Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.341-348
    • /
    • 2014
  • Wedge filter could use to increase the dose distribution at the hot dose regions. We evaluated dose discrepancy at surface and build region in the infield and outfield that Metal Wedge (MW) and Enhance Dynamic Wedge (EDW) were interact with photon. In this paper, we used Gafchromic EBT3 film that had excellent spatial resolution, composed the water equivalent materials and changed the optical density without development. The set up conditions of linear accelerator were fixed 6 MV photon, 100 cm SSD, $10{\times}10cm^2$ field size and were irradiated 400 cGy at Dmax. The dose distribution and absorbed dose were evaluated when we compared the open field with $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ metal wedge and enhanced dynamic wedge. A $15^{\circ}$ metal wedge could increase the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. A $30^{\circ}$ metal wedge could decrease the surface and build up region dose than using a $30^{\circ}$ enhanced dynamic wedge. A $45^{\circ}$ metal wedge could decrease by large deviation the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. The dose of penumbra region at outfield were increased on the thick side but were decreased on the thin side. It could be decrease the surface dose and build up region dose, if the metal wedge filters were properly used to make a good dose distribution and not closed the distance of surface.

The Effects of the CT Voltages on the Dose Calculated by a Commercial RTP System (CT 관전압이 상용 전산화치료계획장치의 선량계산에 미치는 영향)

  • 강세권;조병철;박희철;배훈식
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • The relationship between the dose calculated with a radiotherapy treatment planning system (RTPS) and CT number verses the relative electron density curve was investigated for various CT voltages and beam qualifies. We obtained the relationship between the CT numbers and electron densities of the tissue equivalent materials for various CT voltages and beam qualifies. At lower CT voltages, the higher density materials, like cortical bone, showed larger CT numbers and the soft tissues showed no variations. We peformed a phantom study in a RTPS, where a phantom consisted of lung and bone legions in water. We calculated the dose received behind the lung and bone regions for 6 MV photon beams, in which the regions below the lung, water and bone received higher doses in this listed order. The result was the same for 10 MV photon beams. For the clinical application, the doses were calculated for the lung and pelvis. No difference was observed when using different electron density conversion tables with various CT voltages from a same CT. A relative dose difference of 1.5% was obtained when the CT machine for the density conversion table was different from that for the CT image for planning.

  • PDF

Dose Evaluation of Three-Dimensional Small Animal Phantom with Film Dosimetry (필름계측을 이용한 3차원 소동물 팬텀의 선량평가)

  • Han, Su Chul;Park, Seungwoo
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.87-92
    • /
    • 2017
  • The weight of small animal dosimetry has been continuously increased in pre-clinical studies using radiation in small animals. In this study, three-dimensional(3D) small animal phantom was fabricated using 3D printer which has been continuously used and studied in the various fields. The absorbed dose of 3D animal phantom was evaluated by film dosimetry. Previously, the response of film was obtained from the materials used for production of 3D small animal phantom and compared with the bolus used as the tissue equivalent material in the radiotherapy. When irradiated with gamma rays from 0.5 Gy to 6 Gy, it was confirmed that there was a small difference of less than 1% except 0.5 Gy dose. And when small animal phantom was irradiated with 5 Gy, the difference between the irradiated dose and calculated dose from film was within 2%. Based on this study, it would be possible to increase the reliability of dose in pre-clinical studies using irradiation in small animals by evaluating dose of 3D small animal phantom.

Study on Exposure Dose According to Change of Source to Image Distance and Additional Filter Using Abdomen Phantom (복부팬텀을 이용한 SID 변화와 부가필터 유무에 따른 피폭선량에 관한 연구)

  • Kim, Ki-Won;Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.407-414
    • /
    • 2016
  • This study is to minimize the patient dose and maintain the image quality according to change of source to image receptor distance and applying additional filter. In this study, we used the DR system, the tissue-equivalent abdomen phantom and the aluminium filter. The exposure conditions were set to 80 kVp using AEC mode. The collimation size was $16{\times}16inch$. The exposure dose were measured 10 times when the SID was changed with 100, 110, 120 and 130 cm, respectively. The pirana 657 for dosimeter was located on center of radiation irradiation. The acquired images were analyzed by using the image J. In the results, the tube current was increased with increasing the SID but ESD was decreased with increasing the SID. The decrease of ESD attribute to use of filter that remove the photon of lower energy. In the histogram results using image J, there were differences between the ESD and the exposure conditions according to change of SID. However, there were not differences in histogram. Therefore, the exposure dose could reduced when set the longer SID. For pediatric exam, the exposure dose could reduced when used the aluminium filter.

Study on the Change of Absorbed Dose and Image Quality according to X-ray Condition of Detector in Digital Radiography(DR) (Digital Radiography(DR)에서 검출기의 X선 조건에 따른 흡수선량 및 영상화질 변화에 관한 연구)

  • Hwang, Jun-Ho;Jeong, Jae-Ho;Kim, Hyun-Soo;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.99-106
    • /
    • 2017
  • This study focused on the issue that when a diagnostic detector is found to have a defect, a patient would be exposed to radiation and image quality would be degraded. Though dose analysis, an experiment was conducted to evaluate detector performance as Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR). Absorbed dose, SNR and CNR were measured using a dosimeter and a tissue equivalent phantom. The experiment was conducted to compare whether the dose value shown after being attached to the back side of the phantom matches the dose value attached behind the detector, where in the conditions of skull, chest and abdomen were set at 75 kVp, 25 mAs, 110 kVp, 8 mAs, and 80 kVp, 20 mAs, respectively. As a result, there was a difference in that the dose values attached to the back side of the detector were 0.004 mGy, 0.006 mGy, 0.003 mGy, whereas those of the back side of the phantom were 0.006 mGy, 0.016 mGy, 0.017 mGy. In order to match both values, the condition was increased and SNR and CNR also increased from 88.32, 88.10, 4.09, 1.63, 87.94, 79.97 to 93.87, 93.75, 4.91, 4.03, 92.02, 84.92. Though this study, we found that when a detector is found to have a aging, it shortens the life of equipment and increases the dose of a patient, also the improvement effect of image quality is inadequate.