• Title/Summary/Keyword: 드로잉 성형

Search Result 142, Processing Time 0.025 seconds

An Experimental Approach of Milli-Structure Sheet Metal Forming (미세 박판 성형 특성에 대한 실험적 연구)

  • Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.471-476
    • /
    • 2001
  • Milli-structure components ate classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiment. Generally, milli-structure containers or cases like cellular phone vibrator consist of rectangular-shaped drawing to save installation space. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF

Formability Evaluation of Coated Steel Sheet and Uncoated Steel Sheet with Consideration of Friction Characteristics (마찰특성을 고려한 도금강판 및 무도금강판의 성형성 평가)

  • Lee K.S.;Lee J.M.;Kim B.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.251-252
    • /
    • 2006
  • Tensile and anisotropy test were performed to evaluate the mechanical properties of coated and uncoated steel. These results were used to predict the deference of formability between two sheets. Cup-drawing test was performed to verify formability of two sheets. Also, Cup-drawing test could predict the coefficient of friction and the forming limit. Finite Element Method of cup-drawing was performed to assess the deference between two sheets considering frictional characteristics. This result was compared with the former results.

  • PDF

A Study on the Forming Velocity Effect on the Warm Deep Drawing of AZ31 Sheet (성형속도에 따른 AZ31판재의 온간 디프드로잉 성형성 연구)

  • Kim, K.D.;Kim, H.K.;Kim, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.234-237
    • /
    • 2007
  • Deep drawing of magnesium alloy sheet is conducted at elevated temperatures($200{\sim}300^{\circ}C$) to improve the press formability because of low formability at room temperature. Then magnesium alloy sheet formability is known to be very sensitive to the strain rate. In this paper, we conducted warm deep drawing tests of magnesium alloy AZ31 sheet for various punch velocities. We examined the forming velocity effect on the deep drawing formability and the correlation with the tensile test result.

  • PDF

A Study on the Process Design and Deformation Analysis for Pressure Vessels by Finite Element Method (유한요소법을 활용한 압력용기의 설계 및 성형해석에 관한 연구)

  • 한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.460-467
    • /
    • 1998
  • The investigation deals with the manufacturing process design and deformation analysis for seamless pressure vessels Axisymmetric multistage deep drawing is a complex and important sheet metal forming process in the industry. In this study the process design for large size cylindrical shells with various thickness is performed and a general guideline for forming process design of pressure vessels will be suggested. Thus in this paper for the verification of the forming process design the forming analysis of pressure vessels will be carried out by PAM-STAMP which is on the basis of finite element analysis. In this case the formability of pressure vessels is evaluated using the results of computer simulation.

  • PDF

A Study on the Development of Forming Process for a Compressor Shell Body (압축기용 쉘바디의 성형공정 개발에 관한 연구)

  • Kim, Min-Jeong;Oh, Won-Jung;Shin, Dong-Cho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.635-640
    • /
    • 2016
  • The shell body is the main exterior part of a compressor, and production of shell bodies has increased along with a growing demand for air conditioners, refrigerators, air compressors, and so on. Cracks frequently occur in the process of welding a shell body. In this study, a deep drawing process for creating a shell body from a blank is developed. The technique consists of a four-step deep drawing and a two-step trimming process. Analysis is performed by DEFORM software to examine the safety of the deep drawing and trimming processes. The deep drawing process for the shell body developed in this study would have wide application in many industrial fields.

An Analysis of Axisymmetric Deep Drawing by the Energy Method (에너지법에 의한 축대칭 디프드로잉의 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.51-61
    • /
    • 1993
  • A systematic approach of the energy method is proposed for analysis of axisymmetric deep drawing in which the total deforming region is divided into five sections by the geometric characteristic. The corresponding solution is found through optimization of the total energy dissipation with respect to some parameters assumed in the kinematically admissible velocity field defined over each region. The sheet blank is divided into three-or five-layers to consider the bending effect. For the evaluation of frictional energy, it is assumed that the blank holding force acts on the outer rim of the flange and that the contact pressure acting on punch shoulder or die shoulder has uniform distributions, respectively. The computed results by the present method are compared with the experiment and the computed results by the elastic-plastic finite element method for the distribution of thickness strain and the relation between the punch stroke and punch load. The results for the case of multi-layers show better agreements than for the case of a single layer in load vs. stroke relation and strain distribution. It is thus shown that the multi-layer technique can be effectively employed in analyzing axisymmetric deep drawing in connection with the energy method.

A Study on Improving The Coefficient of Utilization of Material in Deep Drawing Process (딥드로잉공정에서의 재료 수율 향상에 관한 연구)

  • Ha, Jong-Ho;Kang, Hyung-Sun;Baik, Ho-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.509-516
    • /
    • 2009
  • This paper is the study on improving the coefficient of utilization of material in deep drawing process. Cylindrical cup drawing process is widely used in sheet metal forming process. The blank shape is one of the important things in sheet metal forming process. It is produced for the bridge of blank in a blanking process. The coefficient of utilization of material is much effected by this bridge of blank. This study offered a new process method to reduce the loss of material. The new blank shape offered and manufactured by new process method is investigated by a finite element method and the experiment. Then the wrinkling, the punch load, the thickness distribution is observed. This result is different from the result of circular blank process. And it is got that the Max strain, the wrinkle and the height of the wrinkle are effected by the holding force and the punch load. As a result, if the processing optimum condition is found, the loss of material will be reduced. It is necessary to research systematically about determining the optimum value of process variables.

A Study on Improving The Coefficient of Utilization of Material in Deep Drawing Process (딥드로잉 공정에서 재료 이용률을 높이기 위한 연구)

  • Lee, Kyung-Won;Ban, Jae-Sam;Park, Young-Jin;Cho, Kyu-Zong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.179-186
    • /
    • 2002
  • This paper is the study on improving the coefficient of utilization of material in deep drawing process. Cylindrical cup drawing process is widely used in sheet metal forming process. The blank shape is one of the important things in sheet metal forming process. It is produced for the bridge of blank in a blanking process. The coefficient of utilization of material is much effected by this bridge of blank. This study offered a new process method to reduce the loss of material. The new blank shape offered and manufactured by new process method is investigated by a finite element method and the experiment. Then the wrinkling, the punch load, the thickness distribution is observed. This result is different from the result of circular blank process. And it is got that the Max strain, the wrinkle and the height of the wrinkle are effected by the holding farce and the punch load. As a result. if the processing optimum condition is found, the loss of material will be reduced. It is necessary to research systematically about determining the optimum vague of process variables.

A Study on the Formability of Magnesium Alloy in Warm Temperature (고온상태에서 마그네슘 합금의 디프드로잉 성형성에 관한 연구)

  • Kang, Dae-Min;Hwang, Jong-Kwan;El-Morsy, A.M.;Manabe, Ken-Ichn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.84-90
    • /
    • 2003
  • Magnesium alloys have been paid attention In automotive and industries as lightweight materials, and with these materials it has been attempted at deep drawing process for assessment of formability of sheet metal. For warm deep drawing process with a local heating and cooling technique, both die and blank holder were heated at warm temperature while the punch was kept at room temperature by cooling water. Warm deep-drawing process with considering heat transfer was simulated by finite element method to investigate the improvement of deep-drawability and temperature distribution of Mg alloy sheet. The effect of sham rate sensitivity index on the deformation profile was considered in this work and the simulation results revealed that considering heat transfer is very effective for deep-drawability of Mg alloy. The deformed blank In considering heat transfer was drawn successfully without any localized thinning and the cup height is higher in contrast to results of simulations in considering no heat transfer.

  • PDF