• Title/Summary/Keyword: 드로잉 성형

Search Result 142, Processing Time 0.025 seconds

Experimental Study on the Size Effect and Formability of Sheet Materials in Microscale Deep Drawing Process (마이크로 딥 드로잉 공정에서 박판소재의 크기효과 및 성형성에 관한 실험적 연구)

  • Nam, Jung Soo;Lee, Sang Won;Kim, Hong Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.793-798
    • /
    • 2015
  • This study investigates the effects of the size of copper sheets on the plastic deformation behavior in a microscale deep drawing process. Tensile tests are conducted on the copper sheets to study the flow stress of the materials with different grain sizes before carrying out the microscale deep drawing experiments. After the tensile tests, a novel desktop-sized microscale deep drawing system is used to perform the microscale deep drawing process. A series of microscale deep drawing experiments are subsequently performed, and the experimental results indicate that an increase in the grain size results in the reduction of the deformation load of the copper sheets due to the effects of the surface grain. The results also show that the blank holder gap improves both the formability of copper sheets and the material flow.

Analysis of Square Cup Deep Drawing from two Types of Blanks with a Modified Membrane Finite Element Method (개량박막 유한요소법에 의한 두가지 블랭크로부터의 사각컵 딥드로잉 성형해석)

  • Huh, Hoon;Han, Soo-Sik
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2653-2663
    • /
    • 1994
  • The design of sheet metal working processes is based on the knowledge about the deformation mechanism and the influence of the process parameters. The typical geometric process parameters are the die geometry, the initial sheet thickness, the initial blank shape, and so on. The initial blank shape is of vital importance in the most sheet metal forming operations, especially in the deep drawing process, since the forming load and the strain distribution are significantly affected by the shape of an initial blank. The influence of the initial blank shape on a square cup deep drawing process is investigated by the numerical simulation and the experiment. The numerical simulation is carried out by a modified membrane finite element method which takes bending deformation into account. The numerical and experi-mental results show that the initial blank shape have strong influence on the forming load and the strain distribution. The numerical results are compared with the experimental results and other numerical results which are calculated with the membrane theory.

Formability of AZ31 magnesium sheet alloy of warm deep drawing (AZ31 마그네슘합금의 온간디프드로잉시 판재성형특성)

  • Rhee M. S.;Kang D. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.377-380
    • /
    • 2005
  • In this study, the experiments of warm deep drawing were done with heated die, and with heated die and cooled punch in order to investigate the formability of ZA31 magnesium sheet alloy of warm deep drawing. For this, warm deep drawing experiments were executed under various temperature, punch velocity and blankholder force. The results of warm deep drawing with heated die showed that fracture occurred punch part at punch velocity of 75mm/min and punch stroke of 10mm under temperature of $100^{\circ}C\~250^{\circ}C$, but did not occure under temperature of $275^{\circ}C\~400^{\circ}C$. And fracture at punch stroke of 25mm did not occurre at punch part under punch velocity of 30mm/min and $250^{\circ}C$, but occured under punch velocity of 75 and 125 mm/min. Also the results of warm deep drawing with heated die and cooled punch showed that the temperature happening maximum height under punch velocity of 10-100mm/min was $225-250^{\circ}C$. And necking occurred at punch shoulder under $20\~150^{\circ}C$, but at die wall under $200\~300^{\circ}C$.

  • PDF

Forming Limit of AZ31B Magnesium Alloy Sheet in the Deep Drawing with Cross Shaped Die (십자 형상 금형의 디프 드로잉에서 AZ31B 마그네슘 합금판재의 성형 한계)

  • Hwang, S.H.;Choi, S.C.;Kim, H.Y.;Kim, H.J.;Hong, S.M.;Shin, Y.S.;Lee, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.374-377
    • /
    • 2008
  • Magnesium alloy sheets are usually formed at temperatures between $150^{\circ}C$and $300^{\circ}C$ because of their poor formability at room temperature. In the present study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. First, tensile tests and the limit dome height test were carried out at elevated temperatures to get the mechanical properties and forming limit diagram, respectively. And then deep drawing of cross shaped die was tried to get the minimum corner radius and forming limit at specific temperature. Blank shape, punch velocity, minimum corner radius, fillet size, etc, were determined by finite element analysis physical try-outs. Especially, optimum punch and die temperature were suggested through the temperature-deformation analysis using Pam-stamp.

  • PDF

A Study of Forming limits of Transformation mode of AZ31 Alloy sheet (AZ31 합금 판재의 변형모드에 따른 성형한계에 관한 연구)

  • Jung, J.H.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.378-382
    • /
    • 2008
  • Since the sheet metal forming of Mg alloy is perform at elevated temperature, the effect of strain rates related with the forming temperature and forming speed and R-value is very important factor for formability and forming limits and deep drawing. It is investigated that the effect of material properties such as various temperature, forming speed and strain rates on formability and R-value of Mg alloy sheet in round cup deep drawing. Therefore, the investigation for process variables is necessary to improve formability and forming limits and deep drawing. Also, the effects of strain rate and drawbility were studied by the experiment. The temperature, forming speed, and strain rates and R-value are investigated. Forming of Mg alloy takes consider into temperature, proper forming speed and strain-rate and R-value the formed parts were good without defects for forming limits and deep drawing.

  • PDF

Fabrication and forming of metallic sandwich plates with bi-directional corrugated inner structure (두 방향 주름구조를 내부구조로 하는 금속 샌드위치 판재의 제작 및 성형)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.;Kim, J.Y.;Kim, J.H.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.281-284
    • /
    • 2006
  • Metallic sandwich plates with hi-directional inner structure are important new structures for forming applications. Bi-directional corrugated inner structures with less than 25% of relative density are fabricated by piecewise sectional forming process and then bonded with two face sheets by adhesive bonding. Drawing and U-bending experiments have performed and shown that the radius of curvature of sandwich plates is 75mm and sandwich plates are bended 90 degrees without collapse of inner structures. Bi-directional inner structures are suggested to improve formability of sandwich plates for bending and drawing.

  • PDF

국소 가열방법을 이용한 2단게 축대칭 디프 드로잉 공정의 해석 및 설계

  • 이동우;송인섭;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.104-108
    • /
    • 1992
  • 국소가열 가공방법은 종래 사용 되어온 온간,열간 가공의 경우와는 달리 프레스 성형의 응력조건 또는 양긱,열(온도)에 의한 재료 성질의변화 등을 고려하여, 가공하는 박판의 필요 부분을 선택적으로가열, 냉각 또는 두가지를 조합하여 처리하는 것이다. 온도 구배의 영향이 박판 성형의 공정에 많은 영향을 줌에도 불구하고 종래의 박판 성형가공은 주로 열을 고려하지않은 성형해석이 대부분이었고 열을 고려 하였다라도 대 부분이 실험에의존 한 방법이었다. 그러나 실제의 공정 설계에서 실험만을 통한 공정 변수의규명은 많은 노 력과 시간을 필요로 하기 때문에 컴퓨터를 통한 시뮬레이션의 필요성이 대두 되었다. 본 연구는 박판 축대칭 온도 구배와, 변형해석을 유한 요소적 방법을 통해 행하고 이를 실제 공정 설계에 적용할 수있도록 도움을 주고자 하는 데에 있다.

Methods for Suppressing Tearing of PET Coating During Forming of VCM Steel Sheet for Fabricating Washer (세탁기용 VCM 강판 성형시 PET 코팅층 찢김 저감방법)

  • Son, Young-Ki;Lee, Chan-Joo;Byeon, Sang-Doek;Kim, Myong-Dok;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1027-1033
    • /
    • 2011
  • A VCM sheet is a metal sheet on which PET/PVC is coated for outer panels of home appliances. The purpose of this study is to obtain methods for suppressing PET tearing that occurs during the press forming of the VCM sheet. In order to identity the factors that minimize PET tearing, an FE analysis was performed. The occurrence of PET tearing cannot be predicted using the conventional forming limit diagram. PET is torn by friction between a die and sheet, which is caused by the thickening of material at a die corner. To reduce the thickening of material, the blank shape was re-designed and the thickened material at a flange was removed by a trimming process. The results of the FE-analysis involving modified process parameters showed that the thickness of the product at a die corner is distributed within the clearance of drawing and flangeforming process. A forming experiment was conducted to verify the proposed process parameters. A good final product was obtained without PET tearing of the VCM sheet.

The Simulations on the Formability of AZ31 Magnesium Alloy Sheet in Warm Deep Drawing (AZ31 마그네슘합금판의 온간 디프드로잉 성형성해석)

  • Kang, Dae-Min;Hwang, Jong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn)sheet with a thickness of 1.0mm. Uniaxial tension tests at warm temperature were carried out to investigate the material characteristics of K, m, and n. A warm drawing process with a local heating and cooling technique was developed to improve formability in this study with results of uniaxial tension tests because it is very difficult for Mg alloy to deform at room temperature by the conventional method. The die and blank holder were heated up, while the punch was water-cooled during deformation. FE simulations considering heat transfer were executed with Mg alloy to investigate the Improvement of deep drawability. For the assessment of improvement those were compare with the results of no considering heat transfer and room temperature.

  • PDF

A Study on Improvement of Formability for Deep Drawing Process (디프 드로잉 공정의 성형성 향상에 관한 연구)

  • 최병근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.70-76
    • /
    • 1999
  • Recently most of researches for deep drawing process using sheet metal have been performed on the formability of axisymmetric shape but there have not been any concrete reports on the formability of non-axisymmetric shape In addition the conventional shape radius of the punch and die has been determined by the trying-and-error using industrial experimence and post processing test and only approximate shape radius of the punch and die has been determined by the trying-and-error using industrial experience and post processing test and only approximate shape radius of the punch and die has been present So in this study the optimal shape radius of the punch and die in deep drawing process with biaxisymmetric blank shape would be proposed. Through the deep drawing experiment it is found that in order to obtain the optimal products especially shape radius of the punch and die in all processes is very important.

  • PDF