• Title/Summary/Keyword: 듀랄루민

Search Result 2, Processing Time 0.016 seconds

An Experimental Study of Al2017 on Characteristics of the Surface Roughness in Machining Center Processing (머시닝센터 가공에서 Al2017의 표면거칠기 특성에 관한 실험적 연구)

  • Kim, Chan-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.68-72
    • /
    • 2012
  • Al2017 is typical Duralumin of self-hardening aluminum alloy. It is lightweight, formability and machinability so throughout the industries have widely used automobile, electronics, semiconductor and aircraft as material. A variety of CNC machine tool processing technology, scientific principles and experience have been studied in order to increase accuracy and productivity. Using a machining center is to constant amount of side step and cutting characteristics studied changing depth of cut, revolution per minute and feed rate.

Chatacteristics of Deep Hole Machining for Duralumin Using Periodical Change of Feedrate (이송속도의 주기적 변화를 이용한 듀랄루민재의 심공가공 특성)

  • 김용제
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.240-245
    • /
    • 2000
  • This paper presents the experimental study of drilling for duralumin A2024 with intermittently decelerated feed rate. It is achieved through a programmed periodic increase and decrease in the feed rate using a machining center. The following experimental result were performed with the objective of solving chip to disposal problems. In conventional drilling of aluminum, long continuous chips are produced that wind around the drill causing difficulties in eliminating chips from the cutting zone. In order to acquire the basic data necessary to regulate the chip profile, the relationship between cutting variables and chip shape was investigated. The following conclusions are established from the experimental results. At a suitable feed fluctuation ratio, intermittently decelerated feed drilling proved successful in breaking chips to appropriate lengths while maintaining stable cutting. Thus, it is an effective method for improving chip disposal. The amplitude of the dynamic component of cutting force in intermittent feed frilling is influenced by the feed fluctuation ratio.

  • PDF