• Title/Summary/Keyword: 뒷채움부

Search Result 18, Processing Time 0.026 seconds

Behavior of Flexible Pipes with the Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중 전력케이블 유동성 뒷채움재 이용시 지중연성관의 거동특성)

  • Oh, Gidae;Kim, Daehong;Lee, Daesu;Kim, Kyoungyul;Hong, Sungyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.33-41
    • /
    • 2009
  • In the case of underground power utilities pipe such as circular pipe, the most difficult problem is low compaction efficiency of the bottom of pipe inducing the failure of utilities. To overcome this problem, various studies have been performed and one of these is CLSM (controlled low strength materials) accelerated flow ability. CLSM has already been stage of commercial use in the foreign countries led by power company. In this study, we estimated the behavior of flexible pipe with flowable backfill materials and sand to compare on the DB24 load. The results showed that the deformation of flexible pipe is affected by types of backfill materials. CLSM shows better behavior characteristics than compacting sand. But numerical and analytical results that peformed to compare to the field test results showed big gap with the field results.

  • PDF

Behavior Characteristics of Underground Flexible Pipe Backfilled with Lightweight Foamed Soil (경량기포혼합토로 뒷채움된 연성매설관의 거동특성)

  • Lee, Yong-Jae;Yea, Geu-Guwen;Park, Sang-Won;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • Lightweight Foamed Soil (LWFS) is a useful material for underground pipe backfill because of reusability of excavated soil and no compaction effect. In this research, a pilot test is carried out and monitoring results are analyzed to investigate behaviors of a flexible pipe, when LWFS is applied as a backfill material. Simultaneously, they are compared with another test case which is backfilled with Saemangeum dredged soil. As a result, the vertical earth pressure of the case backfilled with LWFS slurry presents that decreases as much as 25.6% in comparison with dredged soil and it is only within 10% after solidification. In case backfilled with dredged soil, the horizontal earth pressure is more than 3.6 times of the case used by LWFS and the vertical and horizontal deformation is more than 3.2 and 2.6 times of the case, respectively. It presents excellent effects on earth pressure and deformation reduction of LWFS. The stresses measured at the upper side of the pipe generally present compressive aspects in case backfilled with dredged soil. However, they present tensile aspects in case of LWFS. It is because of negative moment occurred at the center of the pipe due to the buoyancy from LWFS slurry. Conclusively, LWFS using Saemangeum dredged soil is very excellent material to use near the area in comparison with the dredged soil. However, the countermeasure to prevent the buoyancy is required.

Comparison of the GPR response of the cavity behind the tunnel lining before and after the backfill grouting (터널 콘크리트 라이닝 배면공동 뒷채움 전후의 GPR 반응)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.191-194
    • /
    • 2008
  • The cavity behind the tunnel lining, caused by overbrake, might be cause a severe instability during tunnel construction. So backfill grouting is essentially required. GPR(Ground penetrating Radar) is widely used to identify the position and size of the cavity and to verify the effect of the backfill grouting. In this study, GPR survey with 450 MHz antenna was implied to access the effect of the backfill grouting before and after the work to the crown part of ○○ tunnel in Seoul respectively. The result of GPR survey conducted before the backfill, was revealed that cavities behind the lining were existed in the areas of 8 spans. Finally, from the GPR survey implied after backfilling, it was turned out that backfill grouting was successfully carried out. Also, GPR survey was ascertained the better contact between lining and rock base at arrangement of bar span.

  • PDF

The Study of the Roughness of the Pavement on the Bridge Deck and Approach Slab using a 5year(2003 to 2007) Pavement Condition Survey Data (HPMS 데이터를 이용한 고속도로 교량 및 뒷채움구간 평탄성 특성 연구)

  • Park, Sang-Wook;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2008
  • Using a 5 year(2003 to 2007) pavement condition survey data from the highway pavement management system(HPMS), the roughness of the bridge deck pavement was analyzed. Based on the result of this analysis, this study tried to identify the factors affecting the deterioration of the bridge deck pavement condition. The data from HPMS indicates that the roughness of the bridge deck pavement is worse than that of the general pavement on the roadbed. The worse roughness of the bridge deck pavement is caused by the settlement of approach slab as well as the surface distress on the bridge deck pavement. In order to improve effectively the roughness of the bridge deck pavement, a management system was established in which not only the regular automated pavement condition survey to check the distress of surface of the bridge deck pavement was adopted but an automated surface profiler to check the degree of settlement of approach slab was applied.

  • PDF

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Horizontal Active Thrusts and Design of GRS-RW System for Distanced Surcharge (상재하중 이격거리를 고려한 GRS-RW 공법의 토압해석 및 설계)

  • 방윤경
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.15-29
    • /
    • 1999
  • This study presents an analytical method of estimating the developed horizontal active thrusts against GRS-RW( Geosynthetic Reinforced Soil Retaining Wall) system adapted to the case of distanced surcharge. In addition, the design charts that could be used for preliminary design of GRS-RW system are presented. The proposed method of analysis uses two body translation mechanism as well as force polygon concept. taking into account the effect of facing's rigidity. Besides. the effect of tension cracks in c-\Phi$ soils, seismic effects and horizontal distance from the back face of wall to uniformly distributed surcharge loadings are also included. The results of horizontal active thrusts obtained from the developed method of analysis are compared with those from Jarquio's modified Boussinesq equation.

  • PDF

Approximate Analysis of Corrugated Steel Culverts (파형강판 암거의 근사해석)

  • Choi, Dong-Ho;Kim, Won-Cheul;Kim, Gi-Nam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.15-27
    • /
    • 2001
  • This paper proposes the force equations(thrust, moment) of corrugated steel culverts through the finite element method. The conditions for maximum thrust and maximum moment are determined from the analysis of soil-structure interaction during the three construction stages, such as backfill to the crown, backfill to the soil cover, and live loads. The proposed form of thrust and moment equations are deduced from the analysis of behaviour and the application of Castigliano's second theorem for the semi-arch structure. Finally, the coefficients used in the proposed equations are determined from a large number of analysis for the various geometries and the soil-structure relative stiffness under the conditions of maximum thrust and maximum moment.

  • PDF

Analysis Model of Corrugated Steel Plates for Soil-Metal Box Culverts (지중강판 박스구조물을 위한 파형강판 해석 모델)

  • Choi, Dongho;Lee, Jongsun;Na, Hosung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.5-18
    • /
    • 2010
  • In this paper, a 3-dimensional stiffened plate model for soil-metal box structures is proposed. 3-dimensional stiffened plate model is enable to model corrugated steel plates of soil metal box culverts considering section modulus and section properties of longitudinal and horizontal direction from a corrugated steel plate. Loading conditions which causes maximum displacement and maximum moment according to the step construction stages(a back filling to the top of the plate, a back filling to the maximum depth of cover, and loading of live loads) was applied and the behaviors of the soil metal box culverts was analyzed. Analysis results of 3-dimensional stiffened model were compared with those of 2-dimensional model, 3-dimensional equivalent plate model and 3-dimensional corrugated plate model. As results, the behaviors of 2-dimensional model and 3 dimensional equivalent model are different from 3-dimensional corrugated plate model but the result of 3-dimensional stiffened model has good agreement with that of 3-dimensional corrugated plate model.

The Stability of Bridge Abutment Reinforced by Pile-slab on Soft Ground Undergoing Lateral Flow (측방유동 연약지반상 파일슬래브로 보강된 교대의 안정)

  • Hong, Won-Pyo;Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.13-24
    • /
    • 2006
  • A site investigation has been performed for bridge abutments constructed on soft ground, which are deformed laterally by backfill. As the result from the evaluation of lateral movement in bridge abutment, the foundation piles were not considered as the passive pile at the design stage and the period for soft ground improvement was not proper. In order to prevent lateral movement of bridge abutment, the pile slab is proposed as a countermeasure. This method can effectively prevent the lateral flow of soft ground, since the overburden surcharge due to backfill on soft ground would be effectively delivered to bedrock through the piles in soft ground. The instrumentation system is designed and installed to investigate the behavior of bridge abutment on soft ground reinforced by pile slab. The instrumentation results show that pile slab effectively resists to the lateral movement of bridge abutment due to backfill. Also, the surcharge loads due to backfill are transmitted to the bedrock through piles. It confirms that the pile slab effectively resists to the lateral movement of bridge abutment due to backfill and the applied design method is reasonable.

The Improvement of Incompatible Sliding Contact Problem Using Mesh Refinement And Its Application to Railway Skewed Culvert Problem (요소 세분화를 이용한 비적합 미끄러지는 접촉문제의 개선과 철도 사각암거 문제에의 적용)

  • Choi, Chan-Yong;Yeo, In-Ho;Chung, Keun-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.435-444
    • /
    • 2017
  • The vehicle-track structure dynamic interaction analysis problem can be treated as sliding contact problem, and it is assumed that vehicle run at a constant speed over a rail modeled as beam elements. Unfortunately, Salome-Meca can not satisfy the compatibility condition for the beam master elements, which are consist of the elements with higher order polynomial shape function, in sliding contact problem. In this study, it is suggested to use more finer beam master element mesh as the remedy for incompatibility in sliding contact problem, and the accuracy of the solution is secured. For this, the effect of beam element mesh refinement consisting runway is analysed through simple examples, and the applicability to the dynamic interaction analysis is evaluated. Finally, the dynamic interaction analysis of railway skewed culvert transition problem is carried out to evaluate the effect of supporting stiffness due to backfill pattern changes and track irregularity due to uneven subgrade settlement.