This study was undertaken to identify optimal head elevation and position in the care of the neurosurgical patient with a cerebral aneurysm. The effects of 0°. 15° and 30° head elevation and three positions (supine, side tying position opposite to the operation site, and side tying position on the same side as the operation site) on ICP was studied in fourteen neurosurgical patients with cerebral aneurysms. The results are as follows : 1. The mean intracranial pressure was significantly lower when the patient's head was elevated at 30° as compared to 0° and 15°. 2. The mean intracranial pressure was significantly lower when the patient was positioned in the supine as compared to side tying position opposite to the operation site and side tying position on the same side as the operation site. The data indicate that head elevation to 30° and the supine position reduce ICP in neurosurgical patients with cerebral aneurysm.
The passive tilt has been performed to study the orthostasis on the cardiovascular system. The orthostasis due to upright tilt was demonstrated as follows: the venous return, cardiac output and systemic arteiral blood pressure were decreased, whereas there was concomitant increase of heart rate, through the negative feedback mediated by such as the baroreceptor . Previous investigators have suggested that the tolerance to the orthostasis could he increased by blocking the cholinergic fiber with atropine which prevented vasodilation and bradycardia through the vasovagal reflex during the orthostasis. However, this hypothesis has not been clearly understood. This study was attempted to clarify the effect of atropine on the tolerance of the cardiovascular system to the upright and head-down tilt, and to investigate the change of the blood flow through head and lower leg with Electromagnetic flowmeter in both tilts before and after atropine state. Fourteen anesthetized dogs of $10{\sim}14kg$ were examined by tilting from supine position to $+77^{\circ}$ upright position (orthostasis), and then to $-90^{\circ}$ head-down position (antiorthostasis) for 10 minutes on each test. And the same course was taken 20 minutes after intravenous administration of 0.5mg atropine. The measurements were made of the blood flow(ml/min.) on the carotid artery, external jugular vein, femoral artery and femoral vein. At the same time pH, $PCO_2$, $PO_2$ and hematocrit (Hct) of the arterial and venous blood, and heart rate(HR) and respiratory rate (RR) were measured. The measurements obtained from upright and head-down tilt were compared with those from supine position. The results obtained are as follows: In upright tilt, the blood flow both on the artery and the vein through head and lower leg were decreased, however the decrement of blood flow through the head was greater than the lower leg And the atropine attenuated the decrement of the blood flow on the carotid artery, but not on the vessels of the lower leg. HR was moderately increased in upright tilt, but slightly in head-down tilt. The percent change of HR after the atropine administration was smaller than that before the atropine state in both upright and head-down tilts. Before the atropine state, RR was decreased in upright tilt, whereas increased in head-down tilt. However after the atropine state, the percent change of RR was smaller than that of before the atropine state in both upright and head-down tilts. In upright tilt, venous $PCO_2$ was increased, but arterial $PO_2$ and venous $PO_2$ were slightly decreased. Hct was increased in both upright and head-down tilts. The findings of blood $PCO_2$, $PO_2$ and Hct were not interferred by the atropine. In conclusion, 1;he administration of atropine is somewhat effective on improving the cardiovascular tolerance to postural changes. Thus, atropine attenuates the severe diminution of the blood flow to the head during orthostasis, and also reduces the changes of HR and RR in both orthostasis and antiorthostasis.
Purpose: This study was done to investigate the effects of backrest elevation of 0 degree and 30 degrees that minimize the risk of increasing ICP when CVP is measured. Methods: Subjects were sixty-four patients who stayed in the neurosurgical intensive care unit after brain surgery at two university-based hospitals. CVP, blood pressure, heart rate and ICP were measured along with position changes in order of backrest position with primary 30 degrees backrest position, 0 degree backrest position and secondary 30 degrees backrest position. For data analysis, one-group, repeated-measures analysis of variance design was used in SAS program. Results: Backrest elevations from 0 degree to 30 degrees did not alter the CVP without increasing the ICP. Therefore, 30 degrees backrest position is a preventive position without increasing ICP. Conclusion: 30 degrees backrest position might be appropriate for brain injury patients when CVP is measured.
Tofu-residue (biji) which was made on a laboratory scale from the three U.S. and three Korean soybean varieties contained approximately 57% dietary fiber, 20% protein, while the commercial residue contained 59% dietary fiber and 17% protein. The percent soluble fiber in total dietary fiber were 3% and 46% for residue and tofu, respectively. The tofu-residue was wet milled by blade grinding once or twice, followed by sieving and centrifugation of the liquid fraction. For twice-ground residue, the dietary fiber content increased from 58.70 to 80.6% in the sieved residue, with a fiber recovery of 90.4%. On the other hand, twice-ground centrifuged solids contained 46.8% protein, representing 42.4% of the total protein. Lipid levels in the sieved residue were much lower than in the original residue.
Journal of Korean Academy of Fundamentals of Nursing
/
v.21
no.3
/
pp.226-234
/
2014
Purpose: This study was done to present guidelines for deciding appropriate times for measuring blood pressure (BP) in patients with neurological disorders who had surgery due to brain damage. Method: It was a repeated measures-experimental research on time variants in BP after nursing care. SBP (Systolic BP) and DBP (Diastolic) were measured every 2 minutes up to 5 times using an EKG patient monitor. Measured data were analyzed using repeated measures ANOVA and paired t-test. Results: For suctioning, there were significantly higher differences for SBP averages after 2 min. (138mmHg, p<0.01) and 4 min. (133mmHg, p<0.01) compared to before suctioning (120mmHg). For position change, there were significant differences in SBP averages after 2 min. (136mmHg, p<0.01) and 4 min. (130mmHg, p=0.01) compared to before changing position (121mmHg). For position change followed by suctioning there were significant differences in SBP averages after 2 min. (136mmHg, p<0.01), 4 min. (136mmHg, p<0.01) and 6 min. (125mmHg, p=0.003) compared to before the interventions (121mmHg). Conclusions: Results indicate that there are significant differences in SBP and DBP over time during nursing interventions, suggesting clinical measurement of BP after 6 min. or 8 min. be done for patients with neurological disorders in neurosurgery clinics.
Park, Young-Chel;Pae, Eung-Kwon;Lee, Jeung-Gweon;Lee, Jong-Suk;Kim, Tae-Kwan
The korean journal of orthodontics
/
v.28
no.4
s.69
/
pp.547-561
/
1998
Obstructive sleep apnea (OSA) is a disorder characterized by repetitive episode of upper airway collapse during sleep. Recent studies showed that not only the anatomic factors but the physiologic factors of the upper airway also have effcts on the occurrence of apnea and that the genioglossus muscle also plays an important role in the maintenance of the upper airway. A variety of therapies were performed to treat OSA, and among them the use of mandibular repositioning appliances showed reasonable results. But there is still a lack of research on the structural and physiological mechanism upon the use of mandibular repositioning appliances. The author selected 26(male 17, female 9) OSA patients that came to the Yonsei University Dental Hospital, Department of Orthodontics, and 20 normal adults (male 10, female 10) and took cephalometric radiographs of them in a supine position before and after the placement of the mandibular repositioning appliance to see the structural changes of the upper airway and compare the therapeutic effects between the two groups. We also studied the waking genioglossus muscle activity in OSA patients and investigated the difference in the electromyogram of the genioglosssus muscle upon the change in body posture and the use of mandibular repositioning appliance. Following results were obtained. 1. Among the cephalometric measurements of the upper airway structure, the length of the soft palate, maximum thickness of the soft Palate and SPAS, MAS, VAL, H-H1, MP-H showed statistically significant differences between the normal and OSA groups, but the IAS and EAS showed no statistically significant differences between the two groups. 2. In both the normal and OSA groups, as the epiglottis moved forward on wearing the mandibular repositioning appliance, the epiglottis level of the upper airway increased and the maximum thickness of the soft palate changed and the hyoid bone also moved forward, but the IAS in both groups showed various results and the effect of the mandibular repositioning appliance on the structure of the upper airway was different in the two groups. 3. Upon changing the position, the electromyogram of the genioglossus muscle showed a increasing tendency but there was no statistically significant differences, and when the mandibular repositioning appliance were worn there was a statistically significant increase in the electromyogram of the genioglossus muscle in both the upright and supine positions. The mandibular repositioning appliances not only have an effect on the anatomical structure of the upper airway but also on the physiology of the upper airway. There are different responses to the use of mandibular repositioning appliance between the normal and OSA groups therefore it could be considered to have the different physiology of the upper airway between the two groups.
KANG Kyoung Ho;LEE Jae-Hac;YOO Sung Kyoo;CHANG Young Jin
Korean Journal of Fisheries and Aquatic Sciences
/
v.30
no.4
/
pp.634-639
/
1997
In order to obtain the basic knowledges for the effective seed production of Perinereis aibuhitensis, sediment preference, burrow shape and behavior with in burrow were investigated in the laboratory. The highest value in both sediment preference and survival rate of P. aibuhitensis were shown at fine sand below 0.10 mm in the mean diameter. The worm made various types of burrows, such as J, L, O, Y and I shapes. Generally, only one individual inhabits in a burrow with head-up, but when excreting, it positions up-side down.
The purpose of the present study was to examine the hemodynamic responses, especially in arterial and skin blood flows, in conjunction with the changes of plasma catecholamine levels as an indirect marker of adrenergic tone during the early stage of head-down tilt (HDT), and to evaluate the early physiological regulatory mechanism in simulated weightlessness. Ten mongrel dogs, weighing8\;{\sim}\;14\;kg, were intravenously anesthetized with nembutal, and postural changes were performed by using the tilting table. The postural changes were performed in the following order: supine, prone, HDT $(-6^{\circ}C)$ and lastly recovery prone position. The duration of each position was 30 minutes. The measurements were made before, during and after each postural change. The arterial blood flow $({\.{Q}})$ at the left common carotid and right brachial arteries was measured by the electromagnetic flowmeter. Blood pressure (BP) was directly measured by pressure transducer in the left brachial artery. To evaluate the peripheral blood flow, skin blood flow $({\.{Q}})$ was calculated by the percent changes of photoelectric pulse amplitude on the forepaw, and skin temperature was recorded. The peripheral vascular resistance (PR) was calculated by dividing respective mean BP values by ${\.{Q}}$ of both sides of common carotid and brachial arteries. Heart rate (HR), respiratory rate (f) and PH, $Po_{2},\;Pco_{2}$ and hematocrit of arterial and venous blood were also measured. The concentration of plasma epinephrine and norepinephrine was measured by radioenzymatic method. The results are summarized as follows: Tilting to head-down position from prone position, HR was initially increased (p<0.05) and BP was not significantly changed. While ${\.{Q}}$ of the common carotid artery was decreased (p<0.05) and PR through the head was increased, ${\.{Q}}$ of the brachial artery was increased (p<0.05) and PR through forelimbs was decreased. ${\.{Q}}$ of the forepaw was initially increased (p<0.05) and then slightly decreased, on the whole revealing an increasing trend. Plasma norepinephrine was slightly decreased and the epinephrine was slightly increased. f was increased and arterial pH was increased (p<0.05). In conclusion, the central blood pooling during HDT shows an increased HR via Bainbridge reflex and an increased ${\.{Q}}$ of the forepaw and brachial ${\.{Q}}$, due to decreased PR which may be originated from the depressor reflex of cardiopulmonary baroreceptors. It is suggested that the blood flow to the brain was adequately regulated throughout HDT $(-6^{\circ}C)$ in spite of central blood pooling. And it is apparent that the changes of plasma norepinephrine level are inversely proportional to those of ${\.{Q}}$ of the forepaw, and the changes of epinephrine level are paralleled with those of the brachial ${\.{Q}}$.
Purpose : In order to perform craniospinal irradiation (CSI) in the supine position on patients who are unable to lie in the prone position, a new simulation technique using a CT simulator was developed and its availability was evaluated. Materials and Method : A CT simulator and a 3-D conformal treatment planning system were used to develop CSI in the supine position. The head and neck were immobilized with a thermoplastic mask in the supine position and the entire body was immobilized with a Vac-Loc. A volumetrie image was then obtained using the CT simulator. In order to improve the reproducibility of the patients' setup, datum lines and points were marked on the head and the body. Virtual fluoroscopy was peformed with the removal of visual obstacles such as the treatment table or the immobilization devices. After the virtual simulation, the treatment isocenters of each field were marked on the body and the immobilization devices at the conventional simulation room. Each treatment field was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR)/digitally composite radiography (DCR) images from the virtual simulation. The port verification films from the first treatment were also compared with the DRR/DCR images for a geometrical verification. Results : CSI in the supine position was successfully peformed in 9 patients. It required less than 20 minutes to construct the immobilization device and to obtain the whole body volumetric images. This made it possible to not only reduce the patients' inconvenience, but also to eliminate the position change variables during the long conventional simulation process. In addition, by obtaining the CT volumetric image, critical organs, such as the eyeballs and spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. The differences between the DRRs and the portal films were less than 3 mm in the vertebral contour. Conclusion : CSI in the supine position is feasible in patients who cannot lie on prone position, such as pediatric patienta under the age of 4 years, patients with a poor general condition, or patients with a tracheostomy.
Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.