• Title/Summary/Keyword: 두바이항

Search Result 12, Processing Time 0.015 seconds

An Empirical Comparison and Verification Study on the Seaport Clustering Measurement Using Meta-Frontier DEA and Integer Programming Models (메타프론티어 DEA모형과 정수계획모형을 이용한 항만클러스터링 측정에 대한 실증적 비교 및 검증연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.2
    • /
    • pp.53-82
    • /
    • 2017
  • The purpose of this study is to show the clustering trend and compare empirical results, as well as to choose the clustering ports for 3 Korean ports (Busan, Incheon, and Gwangyang) by using meta-frontier DEA (Data Envelopment Analysis) and integer models on 38 Asian container ports over the period 2005-2014. The models consider 4 input variables (birth length, depth, total area, and number of cranes) and 1 output variable (container TEU). The main empirical results of the study are as follows. First, the meta-frontier DEA for Chinese seaports identifies as most efficient ports (in decreasing order) Shanghai, Hongkong, Ningbo, Qingdao, and Guangzhou, while efficient Korean seaports are Busan, Incheon, and Gwangyang. Second, the clustering results of the integer model show that the Busan port should cluster with Dubai, Hongkong, Shanghai, Guangzhou, Ningbo, Qingdao, Singapore, and Kaosiung, while Incheon and Gwangyang should cluster with Shahid Rajaee, Haifa, Khor Fakkan, Tanjung Perak, Osaka, Keelong, and Bangkok ports. Third, clustering through the integer model sharply increases the group efficiency of Incheon (401.84%) and Gwangyang (354.25%), but not that of the Busan port. Fourth, the efficiency ranking comparison between the two models before and after the clustering using the Wilcoxon signed-rank test is matched with the average level of group efficiency (57.88 %) and the technology gap ratio (80.93%). The policy implication of this study is that Korean port policy planners should employ meta-frontier DEA, as well as integer models when clustering is needed among Asian container ports for enhancing the efficiency. In addition Korean seaport managers and port authorities should introduce port development and management plans accounting for the reference and clustered seaports after careful analysis.

An Empirical Comparison and Verification Study on the Containerports Clustering Measurement Using K-Means and Hierarchical Clustering(Average Linkage Method Using Cross-Efficiency Metrics, and Ward Method) and Mixed Models (K-Means 군집모형과 계층적 군집(교차효율성 메트릭스에 의한 평균연결법, Ward법)모형 및 혼합모형을 이용한 컨테이너항만의 클러스터링 측정에 대한 실증적 비교 및 검증에 관한 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.3
    • /
    • pp.17-52
    • /
    • 2018
  • The purpose of this paper is to measure the clustering change and analyze empirical results. Additionally, by using k-means, hierarchical, and mixed models on Asian container ports over the period 2006-2015, the study aims to form a cluster comprising Busan, Incheon, and Gwangyang ports. The models consider the number of cranes, depth, birth length, and total area as inputs and container twenty-foot equivalent units(TEU) as output. Following are the main empirical results. First, ranking order according to the increasing ratio during the 10 years analysis shows that the value for average linkage(AL), mixed ward, rule of thumb(RT)& elbow, ward, and mixed AL are 42.04% up, 35.01% up, 30.47%up, and 23.65% up, respectively. Second, according to the RT and elbow models, the three Korean ports can be clustered with Asian ports in the following manner: Busan Port(Hong Kong, Guangzhou, Qingdao, and Singapore), Incheon Port(Tokyo, Nagoya, Osaka, Manila, and Bangkok), and Gwangyang Port(Gungzhou, Ningbo, Qingdao, and Kasiung). Third, optimal clustering numbers are as follows: AL(6), Mixed Ward(5), RT&elbow(4), Ward(5), and Mixed AL(6). Fourth, empirical clustering results match with those of questionnaire-Busan Port(80%), Incheon Port(17%), and Gwangyang Port(50%). The policy implication is that related parties of Korean seaports should introduce port improvement plans like the benchmarking of clustered seaports.