• Title/Summary/Keyword: 동하중

Search Result 577, Processing Time 0.027 seconds

Introduction to design of automobile braking system (자동차 제동장치의 설계입문)

  • 지경택
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.5-19
    • /
    • 1982
  • 차량에 있어서 제동장치가 차지하는 중요도는 다른 부품에 비하여 매우 크다고 말할 수 있겠다. 그래서 차량 brake system을 적용하는데 있어서 가장 기초가 되는 수식 및 일반사항을 설명 함으로써 차량과 brake 관계를 넓게 이해하고 가장 적합한 제동장치의 설계에 도움을 주려는 데 본 기술의 목적이 있다. 우선 차량제원에 맞는 brake 성능에 관하여 생각하여 보자. 2개의 차 축을 갖고 있는 차량에서 제동할 경우 전 후 차축(front axle, rear axle)의 동하중(dynamic weight)은 정지상태 때의 하중과는 달라지게 된다. 그러므로 brake 성능은 이 동하중의 분배에 좌우되는 것이다.

  • PDF

Transformation of Dynamic Loads into Equivalent Static Load based on the Stress Constraint Conditions (응력 구속조건을 고려한 동하중의 등가정하중으로의 변환)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • Due to the difficulty in considering dynamic load in the view point of a computer resource and computing time, it is common that external load is assumed as ideal static loads. However, structural analysis under static load cannot guarantee the safety of design of the structures under dynamic loadings. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. However, previously reported works to distribute equivalent static load were based on ad-hoc methods. Improper selection of equivalent static loading positions may results in unreliable prediction of structural design. The present study proposes the selection method of the proper locations of equivalent static loads to dynamically applied loads when we consider transient dynamic structural problems. Moreover, it is appropriate to take into account the stress constraint as well as displacement constraint condition for the safety design. But the previously reported studies of equivalent static load design methods considered only displacement constraint conditions but not stress constraint conditions. In the present study we consider not only displacement constraint but also stress constraint conditions. Through a few numerical examples, the efficiency and reliability of proposed scheme is verified by comparison of the equivalent stress between equivalent static loading and dynamic loading.

Evaluation of Dynamic Thrust Under Wind Shear in Wind Turbine Below Rated Wind Speed (정격풍속 이하에서 풍력터빈의 윈드쉬어 추력 동하중 개발)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • As wind turbines are getting larger in size with multi-MW capacity, the blades are getting longer, over 40 m, and hence the asymmetric loads produced during the rotation of the rotor blades are increasing. Some factors such as wind shear, tower shadow, and turbulence have an effect on the asymmetric loads on the blades. This paper focuses on a method of modeling the dynamic load acting on a blade because of thrust variation under wind shear. A method that uses thrust coefficient is presented. For this purpose, "wind shear coefficient of thrust variation" is defined and introduced. Further, we calculate the values of the "wind shear coefficient of thrust variation" for a 2 MW on-shore wind turbine, and analyze them for speeds below the rated wind speed. Then, we implement a dynamic model that represents the thrust variation under wind shear on a blade, using MATLAB/Simulink. It is shown that it is possible to express thrust variations on three blades under wind shear by using both thrust coefficient and "wind shear coefficient of thrust variation."

반도체 초정밀장비의 진동허용규제치를 고려한 지지구조의 동특성 개선에 관한 연구

  • 손성완;이홍기;백재호
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.05a
    • /
    • pp.40-46
    • /
    • 2003
  • 진동에 민감한 각종 정밀장비를 갖추고 있는 공장구조물은 설립하는 설계 초기단계에서부터 정밀장비의 정상 운용을 위하여 장비 업체 제시한 진동허용규제치 및 동특성허용규제치를 만족할 수 있도록 공장구조물 설계시 진동 측면에 대하여 동적(動的) 특성을 검토해야만 한다. 이러한 설계조건을 만족시켜주기 위한 방안으로 외부에서 정밀장비로 유입되는 진동에 대찬 진동절연을 위하여 진동전달률 이론을 적용하여 방진효율 산출하는 방법과 정밀장비에서 발생하는 동하중을 고려하여 공장구조물에 대한 동적설계를 수행하는 것으로, 구조물 동특Jt!을 요구되는 만큼 구조물의 동특성 변경하는 SDM(Structural Dynamic Modifacation)방법이 주로 활용된다 이에 본 연구에서는 앞서 언급한 구조물의 동적설계시 후자조건인 구조물의 동특성을 변경하고자 하는 경우에 실구조물에 하중을 정량적으로 조절하며 가할 수 있는 VSD 시스템을 이용하여 구조물의 동특성을 변화시키는 것을 동적해석으로 예측하였고, 현장에서 실제 동적실험으로 구한 결과를 동적설계목표치와 비교하여 유용성에 대하여 확인하였다.

  • PDF

반디호 복합재 착륙장치의 착륙특성에 관한 해석

  • Choi, Sun-Woo;Park, Il-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Most of studies for the ground load and ground behavior of landing gear have been conducted with an assumption that the structure of landing gear was rigid body. The assumption of rigid body during design process results in many errors or discrepancy. High ground load occurs in 3 directions on the shock absorbing strut during landing. This ground load initiated high structural deformation. In this study, the flex-multi-body dynamics is applied to adapt flexible bodies, so the results of analysis can be described close to landing gears real behaviour.

  • PDF

Dynamic Simulation of Rail Strain and Vibration Changes According to Track Irregularity (선로 궤도틀림에 따른 레일 변형률과 진동 변화 동역학 시뮬레이션)

  • Kim, Ju Won;Kim, Yong Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • The method of utilizing the strain and vibration values of rails is primarily used to diagnose the condition of wheels and railroad facilities. The dynamic load is measured under the assumption that the strain of the rail and the load of the railroad vehicle are proportional. Wheel condition is measured under the assumption that the magnitude of the defect and the magnitude of the rail vibration are proportional. However, environmental factors affecting the strain and vibration of the rail such as vehicle speed, wheel load, climate, and track conditions are not reflected, many errors occur depending on the measurement conditions. In this study, the effect of track distortion, which is a major indicator of the track condition among the environmental factors that affect the strain and vibration of the rail, on the strain and vibration of the rail, was examined through dynamic simulation. As a measure to reduce the measurement deviation, the effect of securing additional measurement points was analyzed.

An Application of Dynamic Loading Test of Precast Module Concrete Decks (프리캐스트 모듈 바닥의 동하중 재하시험)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • In this study, the panel joint behavior by the vehicle load moving on precast panel is analyzed. The frame was made for loading and the behavior was determined by using each measuring device. The static response of the panel was examined and compared with the theoretical value, and it was found that the characteristics were very reasonable. In addition, acceleration, velocity, and displacement were measured for dynamic impact evaluation, and the characteristics of moving load were analyzed in the test. The vibration frequency of the panel was measured for the dynamic response by the moving load, and the vibration characteristic was considered to be sensitive to the range of the load. As a result, it is considered that the dynamic response of the connection part should be careful in design because the characteristics are different according to the connection method.

Study on the Structural Optimization based on Equivalent Static Load under Dynamic Load (동하중을 받는 구조물의 등가정하중 기반 구조 최적화 연구)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.421-427
    • /
    • 2014
  • Most of the structure of the real world is influenced under dynamic loads. However, when structure analysis and the structural optimization is performed, it is assumed that the static load acts on structure. When considering the actual load of dynamic loads in order to take into account a variety of loads, computational resources and time becomes a big burden in terms of cost. However, considering only the simple static load condition is not preferable for structural safety. For this reason, a lot of studies have been conducted trying to compensate this trouble by applying weight factor or replacing dynamic load with the equivalent static load. In this study, structural optimization techniques for structures under dynamic loads is proposed by applying the equivalent static load. From previous study, after determining the positions of equivalent static load based on primary degrees of freedom, the equivalent static load is calculated through the optimization process. In this process, the equivalent static load optimization of previous research is complemented by adding constraints to avoid excessively large load extraction. In numerical examples, dynamic load is applied to the truss structure and the plate. Then, the reliability of the proposed optimization technique is verified by carrying out size optimization with the equivalent static load.

Study on Stress Variation in Slab and Support of Shearwall-Type RC Apartment during Construction (전단벽식 아파트에서 시공중 슬래브 및 동바리의 응력변화에 대한 연구)

  • Kim Young-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.161-165
    • /
    • 2004
  • Safety and efficiency in the construction of RC structures mainly depends on optimal operation of shore-slat systems. The disasters in RC construction are mainly due to excessive load applied to falsework and premature removal of supports. Development of sufficient compressive strength of early-age connote is essential for the safety of structures during construction. Most of studies on shore-slab interaction have focused on flat slab structures. In this study, load distributions in floor slabs and supports during the construction of shear wall-type RC apartment building structures is investigated using finite element analysis.

Analysis of Dynamic Behavior of Floating Offshore Wind Turbine System (해상 부유식 풍력 타워의 동적거동해석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this study, the dynamic modeling of floating offshore wind turbine system is reported and the dynamic behavior of the platform for the offshore wind turbine system is analyzed. The modeling of the wind load for a floating offshore wind turbine tower is based on the vertical profile of wind speed. The relative Morison equation is employed to obtain the wave load. ADAMS is used to carry out the dynamic analysis of the floating system that should withstand waves and the wind load. Computer simulations for four types of tension leg platforms are performed, and the simulation results for the platforms are compared with each other.