• Title/Summary/Keyword: 동축 로터

Search Result 18, Processing Time 0.035 seconds

Study on Performance Analyses on Coaxial Co-rotating Rotors of e-VTOL Aircraft for Urban Air Mobility (도심 항공 교통을 위한 전기동력 수직 이착륙기의 동축 동회전 로터의 성능해석 연구)

  • Lee, Yu-Been;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.1011-1018
    • /
    • 2021
  • This numerical study conducts the modeling and the hover performance analyses of coaxial co-rotating rotor(or stacked rotor), using a rotorcraft comprehensive analysis code, CAMRAD II. The important design parameters such as the index angle and axial spacing for the coaxial co-rotating rotor are varied in this simulation study. The coaxial co-rotating rotor is trimmed using the torque value of the upper rotor of the previous coaxial counter-rotating rotor or the total thrust value of the previous coaxial counter-rotating rotor in hover. The maximum increases in the rotor thrust is 1.84% for the index angle of -10° when using the torque trim approach. In addition, the maximum decreases in the rotor power is 4.53% for the index angle of 20° with the thrust trim method. Thus, the present study shows that the hover performance of the coaxial co-rotating rotor for e-VTOL aircraft can be changed by the index angle.

An Experimental Study on Blade Deformation of Coaxial Rotor System Using SPR(Stereo Pattern Recognition) Technique (SPR(Stereo Pattern Recognition) 기법을 이용한 동축 로터 블레이드의 변형에 대한 실험적 연구)

  • Yoo, Chanho;Yoon, Byung-Il;Chae, Sanghyun;Kim, Do-Hyung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.597-609
    • /
    • 2020
  • These days, the coaxial rotor system is used for various purposes like UAVs, Mars exploration helicopters, and the next-generation high-speed rotorcraft. A number of research projects on aerodynamic performance of rotor systems, including the coaxial configuration have been made previously. On the contrary, research on rotor blade deformation has been mainly carried out regarding the single rotor system, where such effort has not been enough on the coaxial system. Nonetheless, in case of the coaxial system, blade deformation analysis is much more important because of the complex air flow around the rotors, and that the distance between the two rotors is a key factor affects aerodynamic performance of the entire system. For these reasons, an experimental study on rotor blade deformation of the coaxial system was conducted using the Stereo Pattern Recognition(SPR) technique, one of the state-of-the-art of photogrammetry method. In this research, a small-scale coaxial rotor test stand designed by Korea Aerospace Research Institute(KARI) was used. With the same test stand, performance of the coaxial configuration had been studied before the experimental study on blade deformation, in order to find the relation between performance and blade deformation of the rotor system. Results of the performance test and the deformation study are presented in this article.

Validation for Performance and Hub Vibratory Load Analyses of Lift-offset Coaxial Rotors in Wind-Tunnel Tests (풍동 시험용 Lift-offset 동축 반전 로터에 대한 성능 및 허브 진동 하중 해석의 검증 연구)

  • Lee, Yu-Been;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.497-505
    • /
    • 2022
  • Performance and hub vibratory load analyses for a lift-offset coaxial rotor are conducted using a rotorcraft comprehensive analysis code, CAMRAD II. The lift-offset coaxial rotor is trimmed to match the total rotor thrust(lift-offset coaxial rotor's thrust) or the individual rotor thrust(upper and lower rotor thrusts, respectively) in this study. The individual rotor's lift and torque, and effective rotor lift to drag ratio for the total rotor are investigated for various advance ratios and lift-offset values. The two result sets with different trim methods are similar to each other and they are correlated well with the wind-tunnel test results. Therefore, the present study using CAMRAD II validates successfully the aeromechanics modeling and analysis techniques for the lift-offset coaxial rotor.

The Numerical Analysis of the Aeroacoustic Characteristics for the Coaxial Rotor in Hovering Condition (동축반전 로터의 제자리 비행 공력소음 특성에 관한 수치 해석적 연구)

  • So, Seo-Bin;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, the aerodynamic and aeroacoustic characteristics that vary depending on the rotation axial distance between the upper and lower rotor, which is one of the design parameters of the coaxial rotor, is analyzed in the hovering condition using the computational fluid dynamics. Aerodynamic analysis using the Reynolds Averaged Navier Stokes equation and the aeroacoustic analysis using the Ffowcs Williams ans Hawkings equation is performed and the results were compared. The upper and lower rotor of the coaxial rotor have different phase angle which changes periodically by rotation and have unsteady characteristics. As the distance between the upper and lower rotors increased, the aerodynamic efficiency of the thrust and the torque was increased as the flow interaction decreased. In the aeroacoustic viewpoint, the noise characteristics radiated in the direction of the rotational plane showed little effect by axis spacing. In the vertical downward direction of the axis increased, the SPL maintains its size as the frequency increases, which affects the increase in the OASPL. As the axial distance of the coaxial rotor increased, the noise characteristics of a coaxial rotor were similar with the single rotor and the SPL decreased significantly.

The Development of Coaxial Rotor MAV (동축 반전 로터 MAV 개발)

  • Chae, Sang-Hyun;Baek, Sun-Woo;Lee, Sang-Il;Kim, Tae-Woo;Lee, Jun-Bae;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.875-883
    • /
    • 2007
  • The objective of this research was to develop a coaxial rotor MAV which is suitable for a indoor reconnaissance mission. Preliminary design parameters were determined, based on the dimensions of other reference MAVs. The designed rotor performance was estimated by Blade Element Momentum Theory, and the analyses were compared against the measurements. Stability and vibration issues of the prototype were circumvented by making parts of vehicle with NC machine, as well as equipped with teetering rotor and stabilizer. The designed coaxial rotor MAV showed successfully flight equipped with video camera. However, it was founded that further research activities should be focused on efficient rotor design to obtain better performance.

Development and Validations of the Aerodynamic Analysis Program of Multi-Rotors by Using a Free-Wake Method (자유후류 기법을 이용한 다중로터 공력해석 프로그램의 개발 및 검증)

  • Park, Sang-Gyoo;Lee, Jae-Won;Lee, Sang-Il;Oh, Se-Jong;Yee, Kwang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.859-867
    • /
    • 2007
  • The objective of this study is to develop and validate a numerical method which can handle the multi-rotor aerodynamic characteristics. For the purpose of power estimation, table look-up method is implemented to the existing unsteady panel code that is coupled with a time-marching free wake model. Also, the Reynolds number scaling is implemented for the application to various regions of Reynolds number. The computed results are validated against the available experimental data for coaxial and tandem rotors. In the validation case for the coaxial rotor, more accurate result is acquired when the thickness effect is considered. The wake instability problem occurs at a particular separation distance between the rotors for tandem rotors. The wake instability is avoided by setting the single-rotor wake geometry as the initial wake geometry for the multi-rotor analysis. The estimated result for rotor separation effect is compared with the result of the momentum theory.

Development and Verification of Small-Scale Rotor Hover Performance Test-stand (소형 로터 블레이드의 제자리 비행 성능 시험장치 개발 및 검증)

  • Lee, Byoung-Eon;Seo, Jin-Woo;Byun, Young-Seop;Kim, Jeong;Yee, Kwan-Jung;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.975-983
    • /
    • 2009
  • This paper presents the work being carried out in order to deduce hover performance of a small-scale single rotor blade as a preliminary study of a small coaxial rotor helicopter development. As an initial research, a test stand capable of measuring thrust and torque of a small-scale rotor blade in hover state was constructed and fabricated. The test stand consists of three parts; a rotating device, a load measuring sensor and a data acquisition system. Thrust and torque were measured with varying collective pitch angle at fixed RPM. Through this research, hover performance tests were conducted for a small-scale single rotor blade operating in low Reynolds number ($Re\;{\approx}3{\times}10^5$), as well as for verifying the test stand itself for acquiring hover performance.

Vibratory Loads Reduction of a Coaxial Rotorcraft Using Individual Blade Control Scheme (개별 블레이드 제어(IBC) 기법을 이용한 동축반전 회전익기의 진동하중 억제에 관한 연구)

  • Hong, Seonghyun;You, Younghyun;Jung, Sung Nam;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.364-370
    • /
    • 2019
  • In this paper, an individual blade control (IBC) methodology is applied to find the best input scenario for vibratory hub loads reduction of XH-59A co-axial rotorcraft in high speed flight. A comprehensive aeromechanics analysis code CAMRAD II is employed to analyze the aircraft. A parametric study is conducted for optimum IBC inputs leading to the maximum vibration reduction. Numerical results demonstrate that up to 50% reduction in the hub vibration index is obtained for an IBC input at 3/rev frequency with the amplitude and phase angle of 0.5 deg. and 300 deg., respectively. The upper rotor exhibits as much as 6% more vibration reduction as compared to that of the lower rotor due to a clean inflow characteristic of the rotor. It is found that further vibration reduction gain is reached for IBC inputs with advancing-side only control. The hub vibration becomes reduced by up to 17% in reference to that with full rotor disk control. It is noted that the additional gain is obtained with significantly less power input with the advancing-side only control.

Computational Flow Analysis around Coaxial Rotor Blades with Various Ducts (덕트형상에 따른 동축반전 로터블레이드 주위의 전산유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2010
  • Regarding the aircrafts with a rotor blade system, the miniaturization of them is limited due to the rotor blade length and the tail rotor system. To miniaturize an aircraft, an equipment is required that increases thrust and also shortens the length of the rotor blade. The present study will conduct the flow analysis for miniaturizing the aircraft by applying a duct to the coaxial rotor blade system without tail rotor. First, the verification on the calculated results was conducted through the computational flow analysis on the coaxial rotor blade system without a duct. Then, the flow analysis for the coaxial rotor blade systems was performed including Ka-60 duct, Single duct, Twin duct, and Double duct, respectively. From the numerical results, the thrust coefficient appeared higher with the duct than without a duct for the coaxial rotor blade system. Especially, in the case of Double duct, the thrust was improved due to the increase of incoming flow and the extension of the wake area. These results will be used as the basic concepts for miniaturizing the aircraft with the rotor blade system. The flow analysis on the coaxial rotor blade system including the fuselage remains as a future work.

Performance and Airloads Analyses for a Rigid Coaxial Rotor of High-Speed Compound Unmanned Rotorcrafts (고속 비행 복합형 무인 회전익기의 강체 동축반전 로터의 성능 및 공력 하중 해석)

  • Kwon, Young-Min;Park, Jae-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2020
  • This study investigates the performance and blade airloads for a rigid coaxial rotor of high-speed compound unmanned rotorcrafts. The present compound unmanned rotorcraft uses not only a rigid coaxial rotor, but also wings and propellers for high-speed flights. For the rigid coaxial rotor in this work, CAMRAD II, a rotorcraft comprehensive analysis code, is used to study the performance at a flight speed of up to 250 knots and blade section lift forces at 230 knots. As the flight speed increases, the rotor power decreases; however, the power of propellers increases to overcome the drag force of a rotorcraft in high-speed flight. The effective lift-to-drag ratio of a rotor has the maximum value of about 11.6 which is much higher than the value of the conventional helicopter. The blade section lift forces of the upper and lower rotors at 230 knots show the similar variation trends for one rotor revolution, and the impulses because of the aerodynamic interaction between both rotors are observed.