• Title/Summary/Keyword: 동적 평형성

Search Result 113, Processing Time 0.025 seconds

Potassium Supply Characteristics in Different Forest Soils (지역별(地域別) 산림토양(山林土壤)의 K(Potassium) 공급(供給) 특성(特性))

  • Jin, Hyun-O;Kim, Jun-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.64-73
    • /
    • 2001
  • Generally potassium in the soil can be remained as water soluble, exchangeable, and available types, respectively. Theses types of potassiums are also known to keep their kinetic relationships to each other. The Purpose on this research was to investigate types and relationships of potassium in the soil, and the characteristics of potassium supply in different forest soils. The results could be summarized as follows; 1. The amounts of available potassium in A and B horizon soils by continuous leaching with 0.01N-HCl were as follows : for A Horizon soils, pohang(Gray brown forest soils), Changsung (Brown forest soils), and Youngwol(Dark red forest soils) were ranged from 0.2me/l00g to 0.8me/100g, Taean(Red and Yellow forest soils) was 0.1-0.6me/100g, Kapyung(Brown forest soils) was 0.2-0.4me/100g. For the B layer, Youngwol was 0.1-0.5me/100g, Pohang, Taean, Kapyung were 0.1-0.4me/100g, Changsung was 0.1-0.3me/100g, respectivly. 2. Of ten times-pulse leaching with 0.01N-HCl for A layer soil, more 80% of total available potassium leaching were recovered by the second pulse as leachate for Pohang, Changsung, Youngwol, while similar amounts of potassium in the leachate were obtained with the third pulse leaching for Kapyung, Taean, respectively, On the other hand, the 80 % release of available potassium from the B layer soil was obtained by the second pulse leaching for all areas investigated. 3. For the relationships between soluble potassium and exchangeable potassium, the exchangeable potassium was increased while the soluble potassium was not changed significantly in B layer. And both soluble potassium and exchangeable potassium in A layer were similar. For the relationship between exchangeable potassium and available potassium in both A and B layers, the amounts of available potassium increased by 1.2 to 1.5 times as the exchangeable potassium increased. 4. For distribution of all types of potassium throughout locations investigated, the types of potassium were in the decreasing orders of available, exchangeable, and soluble. 5. The simplified method for an analysis of all types of potassium by sequential leaching with 0.01N-HCl should be developed not only with respect to time-saving and efficiency but also verification of the relationship between available potassium and tree growth.

  • PDF

Spectroscopic Studies on U(VI) Complex with 2,6-Dihydroxybenzoic acid as a Model Ligand of Humic Acid (분광학을 이용한 흄산의 모델 리간드인 2,6-Dihydroxybenzoic acid와 우라늄(VI)의 착물형성 반응에 관한 연구)

  • Cha, Wan-Sik;Cho, Hye-Ryun;Jung, Euo-Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • In this study the complex formation reactions between uranium(VI) and 2,6-dihydroxybenzoate (DHB) as a model ligand of humic acid were investigated by using UV-Vis spectrophotometry and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The analysis of the spectrophotometric data, i.e., absorbance changes at the characteristic charge-transfer bands of the U(VI)-DHB complex, indicates that both 1:1 and 1:2 (U(VI):DHB) complexes occur as a result of dual equilibria and their distribution varies in a pH-dependent manner. The stepwise stability constants determined (log $K_1$ and log $K_2$) are $12.4{\pm}0.1$ and $11.4{\pm}0.1$. Further, the TRLFS study shows that DHB plays a role as a fluorescence quencher of U(VI) species. The presence of both a dynamic and static quenching process was identified for all U(VI) species examined, i.e., ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$. The fluorescence intensity and lifetimes of each species were measured from the time-resolved spectra at various ligand concentrations, and then analyzed based on Stern-Volmer equations. The static quenching constants (log $K_s$) obtained are $4.2{\pm}0.1$, $4.3{\pm}0.1$, and $4.34{\pm}0.08$ for ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$, respectively. The results of Stern-Volmer analysis suggest that both mono- and bi-dentate U(VI)-DHB complexes serve as groundstate complexes inducing static quenching.

Tectonic Movement in the Korean Peninsula (I): The Spatial Distribution of Tectonic Movement Identified by Terrain Analyses (한반도의 지반운동 ( I ): DEM 분석을 통한 지반운동의 공간적 분포 규명)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.368-387
    • /
    • 2007
  • In order to explain geomorphological characteristics of the Korean Peninsula, it is necessary to understand the spatial distribution of tectonic movements and its causes. Even though geomorphological elements which might have been formed by tectonic movements(e.g. tilted overall landform, erosion surface, river terrace, marine terraces, etc.) have long been considered as main geomorphological research topics in Korea, the knowledge on the spatial distribution of tectonic movement is still limited. This research aims to identify the spatial distributions of tectonic movement via sequential analyses of Digital Elevation Model(DEM). This paper first developed a set of terrain analysis techniques derived from theoretical interrelationships between tectonic uplifts and landsurface denudation processes. The terrain analyses used in this research assume that elevations along major drainage basin divides might preserve original landsurfaces(psuedo-landsuface) that were formed by tectonic movement with relatively little influence by denudation processes. Psuedo-landsurfaces derived from a DEM show clear spatial distribution patterns with distinct directional alignments. Lines connecting psuedo-landsufaces in a certain direction are defined as psuedo-landsurface axes, which are again categorized into two groups: the first is uplift psuedo-landsurface axes that indicate the axis of landmass uplift; and the second is denudational psuedo-landsurface axes that cross step-shaped pusedo-landsurfaces formed via surface denudation. In total, 13 axes of pusedo-landsurface are identified in the Korean Peninsula, which show distinct direction, length, and relative uplift rate. Judging from the distribution of psudo-landsurfaces and their axes, it is concluded that the Korean Peninsula ran be divided into four tectonic regions, which are named as the Northern Tectonic Region, Center Tectonic Region, Southern Tectonic Region, and East Sea Tectonic Region, respectively. The Northern Tectonic Region had experienced a regional uplift centered at the Kaema plateau, and the rate of uplift gradually decreased toward southern, western and eastern directions. The Center Tectonic Region shows an arch-shaped uplift. Its uplift rate is the highest along the East Sea and the rate decreases towards the Yellow sea. The Southern Tectonic Region shows an asymmetric uplift centered a line connecting Dukyu and Jiri Mountains in the middle of the region. The eastern side of the Southern Regions shows higher uplift rate than that of the western side. The East Sea Tectonic Region includes south-eastern coastal area of the peninsula and Gilju-Myeongchun Jigudae, which shows relatively recent tectonic movements in Korea. Since this research visualizes the spatial heterogeneity of long-term tenonic movement in the Korean peninsula, this would provide valuable basic information on long-term and regional differences of geomorphological evolutionary processes and regional geomorphological differences of the Korean Peninsula.