• Title/Summary/Keyword: 동적 주기

Search Result 617, Processing Time 0.028 seconds

Effect of ankle strengthening exercise using BOSU ball and taping on plantar pressure in patients in their 20s with hallux valgus (보수볼을 이용한 발목 강화 운동과 테이핑이 엄지발가락가쪽휨증을 가진 20대 환자의 발바닥 압력에 미치는 영향)

  • SAIKHANZUL, JARGALSAIKHAN;Jeong, Beom-Cheol;Yoo, Kyung-Tae
    • Journal of Industrial Convergence
    • /
    • v.19 no.6
    • /
    • pp.81-91
    • /
    • 2021
  • This study was conducted to investigate the effect of ankle muscle strengthening exercise using BOSU ball and taping on static and dynamic plantar pressure in patients with hallux valgus. Subjects were 26 men and women in their twenties with hallux valgus, and they were randomly assigned to a taping group (TG; n=13) and an ankle strengthening group (ASG; n=13). Each group received the appropriate intervention over a total of 4 weeks, and static and dynamic plantar pressure were measured before and after the intervention. Independent T-test was performed to examine the difference in the amount of change between groups, and paired-sample T-test was performed to determine whether the difference between the pre-post values within the group was significant. The statistical significance level was set as α=.05. As for the ratio of the total body weight of the foot (Foot), the amount of change in the ASG of the left foot was significantly decreased compared to the TG within the group (p<.05). Significantly increased (p<.05). As for the degree of pronation of the foot (MP/change ratio), the amount of change in the TG of the right foot was significantly decreased compared to the ASG (p<.05), and in the force of the foot, the TG of the left foot was the amount of change within the group compared to the ASG. was significantly increased (p<.05), and in the group-to-group change, the amount of change in TG was significantly different than that of ASG (p<.05). Therefore, it can be considered that ankle strengthening exercise using bosu ball and taping are insufficient to give effective change to patients with hallux valgus.

Parametric Study for Seismic Design of Temporary Retaining Structure in a Deep Excavation by Dynamic Numerical Analysis (동적수치해석을 이용한 대심도 흙막이 가시설 내진설계 변수연구)

  • Yang, Eui-Kyu;Yu, Sang-Hwa;Kim, Dongchan;Kim, Jongkwan;Ha, Ik-Soo;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.45-65
    • /
    • 2022
  • In this paper, a diaphragm wall that supports soils and rock was modeled using FLAC, a finite difference analysis program, to evaluate the seismic behavior of temporary retaining structures in a deep excavation. The appropriateness of the numerical model was verified by comparing its results with those of the centrifuge test performed in a similar condition. The bending moment distribution along the diaphragm wall shows a very similar tendency, and the maximum acceleration obtained at the backfill and top of the wall shows a difference within 5%. Based on the developed model, a parametric study was conducted in various input earthquake, ground, and excavation conditions. The maximum structural forces and bending moment under earthquake loading were compared with the maximum values during excavation, from which the critical condition that requires a seismic design was roughly sorted out. The maximum bending moment of a wall that retains soil layers increased 17%. Particularly, the axial force of struts located in loose soils increased 32% under 100 years return period of an earthquake event, which strongly is estimated to require seismic design for structural safety.

A Study on the Relationship between Body Function and Prelusive Movement to Falls to Promote Wellness in Chronic Stroke Patients (만성뇌졸중 환자의 웰니스 증진을 위한 신체기능과 낙성전조동작의 관련성 연구)

  • Park, Chang-Sik;Kim, Jin-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.7
    • /
    • pp.181-192
    • /
    • 2021
  • This study was conducted to investigate the effects of a participatory rehabilitation program on sit-rise and rise-to-walk test performances, and perception and motor skills in adults with medically vulnerable individuals and, adults with developmental disabilities in particular. Seventeen adults with developmental disabilities participated in a participatory rehabilitation program using resistance bands and exercise balls, for 60 minutes once weekly over 13 weeks. Their performances were measured before and immediately after the intervention, and 12 weeks after. The findings were as follows. In the sit-rise test, the number of times rising from sitting posture increased after the intervention versus before, but the difference was not statistically significant. In the rise-to-walk test, the performance showed statistically significant difference over time, and the post-hoc test showed a significant effect after the intervention versus before. There was no significant difference in perception and motor skills. In sum, the participatory rehabilitation program positively influenced dynamic balancing related to functional activities but had no significant effect on perception and motor skills, which is related to motor control and motor learning. It is suggested that to increase the participation in community activities, reduce fall risk, and improve dynamic balancing abilities in adults with developmental disabilities, participatory rehabilitation programs should be utilized to promote the physical wellbeing.

Comparison of Measured Natural Frequencies of a Railway Bridge Specimen Between Different Excitation Methods (철도교량 시험체의 가진방법에 따른 고유진동수 측정치 변동에 대한 비교 분석)

  • Kim, Sung-Il;Lee, Jungwhee;Lee, Pil-Goo;Kim, Choong-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.535-542
    • /
    • 2010
  • Precise estimation of a structure's dynamic characteristics is indispensable for ensuring stable dynamic responses during lifetime especially for the structures which can experience resonance such as railway bridges. In this paper, the results of forced vibration tests of different excitation methods (vibration exciter and impact hammer) are compared to examine the differences and the cause of differences of extracted natural frequencies. Consequently a natural frequency modification method is suggested to eliminate effects of non-structural disturbance factors. Also, sequential forced vibration tests are performed before and after track construction according to the construction stage of a railway bridge, and the variation of natural frequencies are examined. Effect of added mass of vibration exciter and variation of support condition due to the level of excitation force are concluded as the major cause of natural frequency differences. Thus eliminating these effects can enhance the reliability of the extracted natural frequencies. Construction of track affects not only the mass of structure but also the stiffness of the structure. Also, the amount of increase in stiffness varies according to the level of structural deflection. Therefore, reasonable estimation of the level of structural response during operation is important for precise natural frequency calculation at design phase.

A Critical Liquefaction Resistible Characteristic of Saturated Sands Based on the Cyclic Triaxial Test Under Sinusoidal Loadings (정현하중재하 진동삼축시험에 기초한 포화사질토의 액상화 한계저항특성)

  • 최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.147-158
    • /
    • 2004
  • Laboratory dynamic tests are carried out to assess the liquefaction potential of saturated sands in most countries. However, simple results such as the maximum cyclic shear stress and the number of cycles at initial liquefaction are used in the experimental assessment of liquefaction potential, even though various results can be obtained from the dynamic test. In addition, it seemed to be inefficient because more than three dynamic tests with different stress ratio have to be carried out to draw a liquefaction resistance experimental curve. To improve the present assessment method fur liquefaction potential, a new critical resistible characteristic far soil liquefaction is proposed and verified through conventional cyclic triaxial tests with Jumunjin sand. In the proposed method, various experimental data such as effective stress path, stress-strain relationship, and the change of excess pore water pressure can be used in the determination of cumulative plastic shear strains at every 1/4 cycle. Especially, the critical cumulative plastic shear strain to initiate liquefaction can be defined in a specific point called a phase change point in the effective stress path and it can be calculated from a hysteric curve of stress-strain relationship up to this point. Through this research, it is found that the proposed cumulative plastic shear strain can express the dissipated energy to resist dynamic loads and consider the realistic soil dynamic behavior of saturated sands reasonably. It is also found that the critical plastic shear strain can be used as a registible index of soils to represent the critical soil dynamic state, because it seems to include no effect of large deformation.

Effect of various abutment systems on the removal torque and the abutment settling in the conical connection implant systems (원추형 연결 임플란트에서 지대주 종류에 따른 나사풀림과 침하현상에 관한 연구)

  • Lee, Jin-Seon;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.92-98
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the effects of different abutment materials on abutment screw loosening and settling-down effect in conical connection type implant system. Materials and methods: Three types of abutment, cementation, gold UCLA, and metal UCLA abutment were used. Two UCLA groups were fabricated in a similar pattern to cementation abutment. Type III gold alloy and Nickel-Chromium alloy was used for casting gold UCLA abutment and metal UCLA abutment, respectively. Fixture and abutment were tightened to 30 Ncm by using digital torque controller and re-tightening was conducted with same force after 10 minutes. Digital torque gauge was used to measure loosening torque and fixture/abutment length was measured by digital micrometer. Dynamic loads between 25 N and 250 N were applied with $0^{\circ}$ angle to the abutment axis. After loading, fixture/abutment length was re-measured and amount of settlement was calculated. Loosening torque value was also measured for comparison Results: All three groups showed significant differences of length when comparing before and after loading, but there was no significant difference of settling amount in all groups. Loosening torque values were significantly decreased when comparing before and after loading in all groups($P$<.05). However, there was no significant difference in loss of loosening torque values when compared to groups. Conclusion: In internal conical connection type implants, dynamic load affected on settlement and loosening torque of implant, but there was no differences between abutments materials. Likewise gold UCLA abutment, metal UCLA abutment might be able to withstand functional load.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

Evaluation of Gusset Plate Connection Stiffness in Braced Frames (가새 골조에서 거싯 플레이트 연결부의 강성 평가)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • To improve braced frame performance, the connection strength, stiffness, and ductility must be directly considered in the frame design. The resistance of the connection must be designed to resist seismic loads and to help provide the required system ductility. In addition, the connection stiffness affects the dynamic response and the deformation demands on the structural members and connections. In this paper, current design models for gusset plate connections are reviewed and evaluated usingthe results of past experiments. Current models are still not sufficient to provide adequate connection design guidelines and the actual stress and strain states in the gusset plate are very nonlinear and highly complex. Design engineers want simple models with beam and column elements to make an approximate estimation of system and connection performance. The simplified design models are developed and evaluated to predict connection stiffness and system behavior. These models produce reasonably accurate and reliable estimation of connection stiffness.

Capacity Spectrum Method Based on Inelastic Displacement Ratio (비탄성변위비를 이용한 능력 스펙트럼법)

  • Han, Sang-Whan;Bae, Mun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.69-80
    • /
    • 2008
  • In this study, improved capacity spectrum method (CSM) is proposed. The method can account for higher mode contribution to the seismic response of MDOF systems. The CSM has been conveniently used for determining maximum roof displacement using both demand spectrum and capacity curve of equivalent SDOF system. Unlike the conventional CSM, the maximum roof displacement is determined without iteration using inelastic displacement ratio and R factor calculated from demand spectrum and capacity curve. Three moment resisting steel frames of 3-, 9- and 20-stories are considered to test the accuracy of the proposed method. Nonlinear response history analysis (NL-RHA) for three frames is also conducted, which is considered as an exact solution. SAC LA 10/50 and 2/50 sets of ground motions are used. Moreover, this study estimates maximum story drift ratios (IDR) using ATC-40 CSM and N2-method and compared with those from the proposed method and NL-RHA. It shows that the proposed CSM estimates the maximum IDR accurately better than the previous methods.

Cache Replacement Policy Based on Dynamic Counter for High Performance Processor (고성능 프로세서를 위한 카운터 기반의 캐시 교체 알고리즘)

  • Jung, Do Young;Lee, Yong Surk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.52-58
    • /
    • 2013
  • Replacement policy is one of the key factors determining the effectiveness of a cache. The LRU replacement policy has remained the standard for caches for many years. However, the traditional LRU has ineffective performance in zero-reuse line intensive workloads, although it performs well in high temporal locality workloads. To address this problem, We propose a new replacement policy; DCR(Dynamic Counter based Replacement) policy. A temporal locality of workload dynamically changes across time and DCR policy is based on the detection of these changing. DCR policy improves cache miss rate over a traditional LRU policy, by as much as 2.7% at maximum and 0.47% at average.