• Title/Summary/Keyword: 동적 전력관리

Search Result 102, Processing Time 0.031 seconds

Effective Key Disseminating Method for Fuzzy Logic Based Dynamic Filtering in Wireless Sensor Network (동적 여과 기법 기반의 무선 센서네트워크에서 효율적인 키 분배를 위한 퍼지 로직 기반 결정 기법)

  • Kim, Jong-Hyun;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.147-150
    • /
    • 2009
  • 최근 새롭게 등장한 무선 센서 네트워크는 기존의 네트워크와는 다르게 통신 인프라가 없는 환경에서도 동작이 가능한 저전력 소출력의 무선 센서간의 네트워크를 형성하고 이들간의 정보 유통이 이루어진다. 무선 센서 네트워크는 열린 환경에서 배치되기 때문에 물리적 공격에 취약하다. 공격자는 손쉽게 노드들을 포획할 수 있으며 포획된 노드를 통해 허위 보고서를 네트워크에 주입할 수 있다. 허위 보고서 삽입 공격은 허위 경보를 유발할 뿐만 아니라 네트워크의 제한된 에너지를 고갈시킨다. 이러한 허위 보고서를 조기에 탐지 및 폐기하기 위하여 Yu와 Guan은 동적 여과 프로토골(dynamic on-route filtering scheme)를 제안하였다. 그러나 무선 센서 노드는 오직 제한된 진력자원으로 이루어져 있기 때문에 전력보존과 전력관리가 중요시 여겨진다. 본 논문에서는 동적 여과 프로토콜에서 허위 보고서 주입 공격에 대한 충분한 보안 강도 제공과 에너지 효율성을 위한 기법을 제안한다.

  • PDF

The power management technique in the Embedded System (임베디드 시스템의 소모 전력 관리 기법)

  • Kim, Wha-Young;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.159-164
    • /
    • 2008
  • The efficiently power management Is an important requirement traditionally in the mobile communication system which uses battery as their power source. Especially, it has been emphasized in the most recent devices, which has to provide high performance and various functions with an extended operating time. In this article, the adaptive Power management technique for the core processor unit in embedded systems used widely for the mobile system thanks to its advantage on power consumption and physical site, is proposed.

  • PDF

Dynamic Power Management For Energy Efficient Wi-Fi Direct (에너지 효율적인 Wi-Fi Direct를 위한 동적 전력 관리 기법)

  • Seo, Youn;Ko, Young-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.8
    • /
    • pp.663-671
    • /
    • 2013
  • Recently, the Wi-Fi Direct standard based on WLAN is getting more attention as a new technology for enabling D2D(Devide-to-Device) communications on mobile devices. However, due to limited power resource of mobile devices and, an energy inefficiency problem can be an issue. In order to solve this problem, the Wi-Fi Direct defines two power management schemes: Opportunistic scheme and Notice of Absence(NoA) scheme. However, there is no concrete description of which power management scheme would be better for when. In this paper, via comprehensive simulation studies using ns-3, we show that each scheme presents obviously different performance and energy efficiency according to data traffic patterns. We then propose more energy efficient way of dynamically switching the two power management schemes.

Dynamic Power Management for Webpage Loading on Mobile Devices (모바일 웹 페이지 로딩에서 동적 관리 기법)

  • Park, Hyunjae;Choi, Youngjune
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1623-1628
    • /
    • 2015
  • As the performance of mobile devices has increased, high-end multicore CPUs have become the norm in smartphones. However, such high performance devices are exposed to the problem of battery depletion due to the energy consumption caused by software performance, and despite increases in battery capacity. The required resources are dynamic and varied, and further user interaction is highly random; thus, Linux-based power management such as DVFS is needed to fulfill requirements. In order to reduce power consumption, we propose a method to restrict the CPU frequency of data download while maintaining user reactivity. This can supplement the weakness of existing Linux-based power management techniques like DVFS in relation to webpage loading. Through the implementation of our method at the application level, we confirm that energy consumption from webpage loading is reduced.

Dynamic Downlink Resource Management of Femtocells Using Power Control in OFDMA Networks (OFDMA 펨토셀 환경에서 전력 제어를 이용한 동적 하향링크 자원관리 방법)

  • Lee, Sang-Tae;Ahn, Chun-Soo;Shin, Ji-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.339-347
    • /
    • 2012
  • Femtocells as home base station for indoor coverage extension and wideband data service, have been studied with significant interests. When femtocell is deployed, the existing cell structural of changes causes various technical problems. In this paper, we investigate the femto-macro cell interference mitigation in OFDMA system. We propose dynamic downlink resource management scheme which adjust the transmitted power of femtocell according to the strength of received macrocell signal and allocates subcarrier to femtocells in a dynamic manner. In this way, the interference between the macrocell users and femtocells is reduced. The simulation results show that proposed scheme enhances both macrocell and femtocell throughputs.

Exploiting Hardware Events to Reduce Energy Consumption of HPC Systems

  • Lee, Yongho;Kwon, Osang;Byeon, Kwangeun;Kim, Yongjun;Hong, Seokin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.1-11
    • /
    • 2021
  • This paper proposes a novel mechanism called Event-driven Uncore Frequency Scaler (eUFS) to improve the energy efficiency of the HPC systems. UFS exploits the hardware events such as LAPI (Last-level Cache Accesses Per Instructions) and CPI (Clock Cycles Per Instruction) to dynamically adjusts the uncore frequency. Hardware events are collected at a reference time period, and the target uncore frequency is determined using the collected event and the previous uncore frequency. Experiments with the NPB benchmarks demonstrate that the eUFS reduces the energy consumption by 6% on average for class C and D NPB benchmarks while it only increases the execution time by 2% on average.

Power-Aware Scheduling for Mixed Real-Time Tasks (주기성과 산발성 태스크가 혼합된 시스템을 위한 전력절감 스케줄링 기법)

  • Gong, Min-Sik;Jeong, Gun-Jae;Song, Ye-Jin;Jung, Myoung-Jo;Cho, Moon-Haeng;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.83-93
    • /
    • 2007
  • In this paper, we address a power-aware scheduling algorithm for a mixed real-time system which consists of periodic and sporadic tasks, each of which is characterized by its minimum period, worst-case execution requirement and deadline. We propose a dynamic voltage scaling algorithm called DVSMT(DVS for mixed tasks), which dynamically scales down the supplying voltage(and thus the frequency) using on-line distribution of the borrowed resources when jobs complete while still meeting their deadlines. With this scheme, we could reduce more energy consumption. As the proposed algorithm can be easily incorporated with RTOS(Real-Time Operating System), it is applicable for handhold devices and sensor network nodes that use a limited battery power. Simulation results show that DVSMT saves up 60% more than the existing algorithms both in the periodic-task and mixed-task systems.

A Power-Aware Scheduling Algorithm with Voltage Transition Overhead (전압 변경 오버헤드를 고려한 전력 관리 알고리즘)

  • Kweon, Hyek-Seong;Ahn, Byoung-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.641-650
    • /
    • 2008
  • As portable devices are used widely, power management algorithm is essential to extend battery use time on small-sized battery power. Although many methods have been proposed, they assumed the voltage transition overhead was negligible or was considered partially. However, the voltage transition overhead might not guarantee to schedule real-time tasks in portable multimedia systems. This paper proposes the adaptive power-aware algorithm to minimize the power consumption by considering the voltage transition overhead. It selects only a few discrete frequencies from the whole frequencies of a system and adjusts the interval between two consecutive frequencies based on the system utilization to reduce the number of frequency change. This algorithm saves the power consumption about 10 to 25 percent compared to a CC RT-DVS method and a frequency-smoothing method.

  • PDF

Design and Implementation on high Efficient Energy-Power Management System for Self-Sustaining USN Sensor Node (자기유지 USN 센서노드용 고효율 전력관리 시스템 구현)

  • Park, Hee-Jeong;Lim, Se-Mi;Jung, Won-Jea;Kim, Sang-Kyu;Kim, Hyeong-Seok;Park, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1640-1641
    • /
    • 2011
  • 다양한 환경에서 USN 시스템이 적용됨에 따라 해당 시스템의 효율적인 전력 운용 및 통신 방식이 중요해 지고 있다. 이에 본 논문에서는 태양전지를 사용하여 획득한 전력을 효율적으로 배터리에 충전시키기 위해 히스테리시스 스위치를 사용한 에너지 획득모듈, 센서노드의 효율적인 전력운영을 위해 아이디 기반의 웨이크업 모�뺐� 센싱정보를 전송후 자체적으로 전력을 차단하는 동적전력관리 모듈을 제안 및 구현을 통해 센서노드의 효율적인 전력 운용을 검증했다.

  • PDF

An Integrated Power Management Framework for WiFi-based Mobile Embedded Systems (WiFi기반 모바일 임베디드 시스템을 위한 통합 전력 제어 기법)

  • Min Jung-Hi;Cha Ho-Jung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.658-665
    • /
    • 2006
  • In these days, the demand of users to extend available period of mobile systems is increased according as the functions of mobile systems have been varied and the use of multimedia application has been increased. This paper proposes an integrated power management framework that considers executed workload types for effective energy management. The conventional methods use DVFS technique for CPU and DPM technique for WNIC separately or simply combine them based on the assumption that they are orthogonal one another. However, the proposed mechanism determines the kind of workload under analysis of the characteristics of workloads incoming through a WNIC. The proposed method can reduce energy consumption of system level effectively by controlling CPU and WNIC to proper power mode based on analyzed characteristics of workload. The experimental result shows the proposed method reduces energy consumption by 9% for BE (Best Effort) workload, CBR (Constant Bit Rate) workload, and Interactive workload on average and by 16% to maximum when compared with the conventional methods which simply combine DVFS technique for CPU and DPM technique for WNIC.