• Title/Summary/Keyword: 동적 베이지안 망

Search Result 2, Processing Time 0.017 seconds

Dynamic Web Recommendation Method Using Hybrid SOM (하이브리드 SOM을 이용한 동적 웹 정보 추천 기법)

  • Yoon, Kyung-Bae;Park, Chang-Hee
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.471-476
    • /
    • 2004
  • Recently, provides information which is most necessary to the user the research against the web information recommendation system for the Internet shopping mall is actively being advanced. the back which it will drive in the object. In that Dynamic Web Recommendation Method Using SOM (Self-Organizing Feature Maps) has the advantages of speedy execution and simplicity but has the weak points such as the lack of explanation on models and fired weight values for each node of the output layer on the established model. The method proposed in this study solves the lack of explanation using the Bayesian reasoning method. It does not give fixed weight values for each node of the output layer. Instead, the distribution includes weight using Hybrid SOM. This study designs and implements Dynamic Web Recommendation Method Using Hybrid SOM. The result of the existing Web Information recommendation methods has proved that this study's method is an excellent solution.

MOnCa2: High-Level Context Reasoning Framework based on User Travel Behavior Recognition and Route Prediction for Intelligent Smartphone Applications (MOnCa2: 지능형 스마트폰 어플리케이션을 위한 사용자 이동 행위 인지와 경로 예측 기반의 고수준 콘텍스트 추론 프레임워크)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.295-306
    • /
    • 2015
  • MOnCa2 is a framework for building intelligent smartphone applications based on smartphone sensors and ontology reasoning. In previous studies, MOnCa determined and inferred user situations based on sensor values represented by ontology instances. When this approach is applied, recognizing user space information or objects in user surroundings is possible, whereas determining the user's physical context (travel behavior, travel destination) is impossible. In this paper, MOnCa2 is used to build recognition models for travel behavior and routes using smartphone sensors to analyze the user's physical context, infer basic context regarding the user's travel behavior and routes by adapting these models, and generate high-level context by applying ontology reasoning to the basic context for creating intelligent applications. This paper is focused on approaches that are able to recognize the user's travel behavior using smartphone accelerometers, predict personal routes and destinations using GPS signals, and infer high-level context by applying realization.