• 제목/요약/키워드: 동적 무기 표적 할당

검색결과 3건 처리시간 0.022초

맵리듀스 환경에서 유전자 알고리즘 기반의 동적 무기할당 알고리즘 (A Dynamic Weapon Allocation Algorithm using Genetic Algorithm in Mapreduce Environments)

  • 박준호;김지은;조길석
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2014년도 추계 종합학술대회 논문집
    • /
    • pp.469-470
    • /
    • 2014
  • 동적 무기할당 문제는 전형적인 NP-완전 문제로써 위협하는 표적에 대해 아군의 무기를 적절히 할당하는 문제이다. 이는 매우 시간 제약적인 문제로써 가능한 단 시간 내에 적절한 무기할당 및 대응을 도출하여야 하지만 매우 유동적인 전장 환경에서 이는 쉽지 않다. 최근 이와 같이 높은 복잡성을 가진 빅데이터를 기반으로 하는 응용에서 분산 처리 시스템을 활용한 분석 및 처리에 대한 연구가 큰 주목을 받고 있고, 대표적인 프레임워크로써 맵리듀스가 활용되고 있다. 그러나 맵리듀스는 전체 데이터에 대한 일괄 처리 기능만을 제공하므로 동적 데이터에 대한 유전자 알고리즘의 수행이 쉽지 않고, 최종 결과 도출에 여전히 많은 시간을 필요로 한다. 본 논문에서는 맵리듀스 환경에서 유전자 알고리즘 기반의 동적 무기할당 알고리즘을 제안한다. 제안하는 기법에서는 맵리듀스 환경에서 유전자 알고리즘의 연속적인 데이터 처리의 지원을 위해 새롭게 추가 및 제거된 무기-표적 데이터만을 분석하고, 이를 기 분석 완료된 데이터와 결합하여 최종 결과를 도출한다. 이를 통해, 신속한 동적무기할당의 수행이 가능하다.

  • PDF

근사적 동적계획을 활용한 요격통제 및 동시교전 효과분석 (Approximate Dynamic Programming Based Interceptor Fire Control and Effectiveness Analysis for M-To-M Engagement)

  • 이창석;김주현;최봉완;김경택
    • 한국항공우주학회지
    • /
    • 제50권4호
    • /
    • pp.287-295
    • /
    • 2022
  • 저고도 궤적의 장사정포 위협이 대두됨에 따라 이를 방어할 요격 시스템의 개발이 시작될 예정이다. 이러한 장사정포의 공격을 방어하는 문제는 전형적인 동적 무기 표적 할당 문제다. 동적 무기 표적 할당 문제에서는 한 시점에서의 의사결정 결과가 이후 시점의 의사결정 과정에 영향을 주며, 이는 마코브 의사결정 모형의 특징이기도 하다. 장사정포의 공격을 방어하기 위한 의사결정 과정에 허용되는 시간은 공격자와 방어자의 거리를 고려할 때 저고도 궤적의 동시 다발성 발사체에 대한 대응은 수 초 이내에 결정되어야 하나, 짧은 시간 내에 마코브 의사결정 과정으로 최적해를 구하는 것은 불가능하다. 본 논문에서는 장사정포 공격을 방어하는 동적 무기 표적 할당 문제를 마코브 의사결정 문제로 나타내고, 3가지 시나리오를 작성한 후 근사적 동적계획 방법을 적용하여 요격이 가능 시간 안에 해의 도출이 가능한지를 시뮬레이션을 통하여 확인하였다. 도출된 해의 품질을 검증하기 위하여 각 시나리오에 대하여 근사적 동적계획을 적용한 결과와 Shoot-Shoot-Look 방법을 적용한 결과를 비교하였다. 시뮬레이션 결과, 장사정포의 방어 시나리오에 대하여 근사적 동적계획의 결과가 Shoot-Shoot-Look 방법을 이용한 결과보다 우수함을 보였다.

유도탄의 실시간 표적 재지정을 위한 랜덤 포레스트 기법과 시뮬레이션 기반 효과 분석 (Random Forest Method and Simulation-based Effect Analysis for Real-time Target Re-designation in Missile Flight)

  • 이한강;장재연;안재민;김창욱
    • 한국시뮬레이션학회논문지
    • /
    • 제27권2호
    • /
    • pp.35-48
    • /
    • 2018
  • 북한의 전술탄도미사일(TBM, tactical ballistic missile)에 대한 방공 분야 연구는 빠른 속도로 변화하는 전장 환경을 고려해야 한다. 아군 유도탄의 표적 재지정 연구는 동적인 전장에 대한 대응뿐만 아니라 아군 방어 자산의 효과적인 운용을 가능하게 한다. 현재까지 진행된 연구는 의사 결정 과정에서 중요한 역할을 하는 TBM의 명중 확률이 고정된 값이기 때문에 실시간 전장 상황을 대변하지 못한다. 따라서 본 연구는 실시간 전장 환경을 고려한 명중 확률을 기반으로 의사 결정을 내리는 표적 재지정 알고리즘을 제안한다. 제안 방법론은 랜덤 포레스트와 무빙윈도우(moving window) 기법을 사용하여 현재 TBM의 위치 및 속도 정보로 TBM의 예상 궤적을 예측하는 궤적 예측 모형을 포함한다. 예상 명중 확률은 궤적 예측 모형과 유도탄의 시뮬레이터를 통해서 계산할 수 있으며, 계산된 명중 확률은 유도탄에 대한 표적 재지정 알고리즘의 의사결정 기준이 된다. 실험에서는 TBM 궤적 예측 모형에 사용한 방법론의 타당성이 검증되었으며, 표적 재지정 의사 결정 과정에서 제안된 모델을 통해 명중 확률을 사용하는 것의 우수성이 확인되었다.