• Title/Summary/Keyword: 동적 격자 적응 기법

Search Result 5, Processing Time 0.022 seconds

Prediction of Aeroelastic Displacement Under Close BVI Using Unstructured Dynamic Meshes (비정렬 동적격자를 이용한 블레이드-와류 간섭에 따른 공탄성 변위예측)

  • Jo, Kyu-Won;Oh, Woo-Sup;Kwon, Oh-Joon;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.37-45
    • /
    • 2002
  • A two-dimensional unsteady, inviscid flow solver has been developed for the simulation of airfoil-vortex interactions on unstructured dynamically adapted meshes. The Euler solver is based on a second-order accurate implicit time integration using a point Gauss-Seidel relaxation scheme and a dual time-step subiteration. A vertex-centered, finite-volume discretization is used in conjunction with the Roe's flux-difference splitting. An unsteady solution-adaptive dynamic mesh scheme is used by adding and deleting mesh points to take account of both spatial and temporal variations of the flow field. The effect of vortex interaction on the aeroelastic displacement of an airfoil attached to the idealized two degree-of-freedom spring system is investigated.

DEVELOPMENT OF HIGH-ORDER ADAPTIVE DISCONTINUOUS GALERKIN METHOD FOR UNSTEADY FLOW SIMULATION (비정상 유동 해석을 위한 고차정확도 격자 적응 불연속 갤러킨 기법 개발)

  • Lee, H.D.;Choi, J.H.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.534-541
    • /
    • 2010
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin method has been developed for the numerical simulation of unsteady flows on unstructured meshes. A multi-level solution-adaptive mesh refinement/coarsening technique was adopted to enhance the resolution of numerical solutions efficiently by increasing mesh density in the high-gradient region. An acoustic wave scattering problem was investigated to assess the accuracy of the present discontinuous Galerkin solver, and a supersonic flow in a wind tunnel with a forward facing step was simulated by using the adaptive mesh refinement technique. It was shown that the present discontinuous Galerkin flow solver can capture unsteady flows including the propagation and scattering of the acoustic waves as well as the strong shock waves.

  • PDF

Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method (적응적 메쉬세분화기법과 분할격자기법을 이용한 극한 도시홍수 실험 모의)

  • An, Hyun-Uk;Yu, Soon-Young
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.511-522
    • /
    • 2011
  • Two-dimensional shallow water model based on the cut cell and the adaptive mesh refinement techniques is presented in this paper. These two mesh generation methods are combined to facilitate modeling of complex geometries. By using dynamically adaptive mesh, the model can achieve high resolution efficiently at the interface where flow changes rapidly. The HLLC Reimann solver and the MUSCL method are employed to calculate advection fluxes with numerical stability and precision. The model was applied to simulate the extreme urban flooding experiments performed by the IMPACT (Investigation of Extreme Flood Processes and Uncertainty) project. Simulation results were in good agreement with observed data, and transient flows as well as the impact of building structures on flood waves were calculated with accuracy. The cut cell method eased the model sensitivity to refinement. It can be concluded that the model is applicable to the urban flood simulation in case the effects of sewer and stormwater drainage system on flooding are relatively small like the dam brake.

HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF

HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF