• Title/Summary/Keyword: 동적 격자

Search Result 162, Processing Time 0.025 seconds

Analysis of Fiber-grating External-cavity Laser Diode Using Large-signal Time-domain Model (대신호 시영역 모델을 이용한 광섬유 격자 외부 공진 레이저 다이오드의 해석)

  • Kim, Jae-Seong;Chung, Youngchul;Cho, Ho Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.227-232
    • /
    • 2012
  • A large-signal time-domain model is implemented to analyze an FG-LD (Fiber Grating Laser Diode) in which a reflective laser diode is hybrid-integrated with a fiber Bragg grating (FBG). When the length of the externally integrated resonator is 8 mm, in which the effective FBG length of 2.1 mm is included, a static frequency chirp of 0.44 GHz and a dynamic frequency chirp of 6.4 GHz are observed. In addition, it is also observed that the eye of the 10Gbps NRZ signal is well open. The FG-LD is expected to be a cost-effective solution for a 10Gbps-class single wavelength laser covering a span of 50 km range.

Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method (적응적 메쉬세분화기법과 분할격자기법을 이용한 극한 도시홍수 실험 모의)

  • An, Hyun-Uk;Yu, Soon-Young
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.511-522
    • /
    • 2011
  • Two-dimensional shallow water model based on the cut cell and the adaptive mesh refinement techniques is presented in this paper. These two mesh generation methods are combined to facilitate modeling of complex geometries. By using dynamically adaptive mesh, the model can achieve high resolution efficiently at the interface where flow changes rapidly. The HLLC Reimann solver and the MUSCL method are employed to calculate advection fluxes with numerical stability and precision. The model was applied to simulate the extreme urban flooding experiments performed by the IMPACT (Investigation of Extreme Flood Processes and Uncertainty) project. Simulation results were in good agreement with observed data, and transient flows as well as the impact of building structures on flood waves were calculated with accuracy. The cut cell method eased the model sensitivity to refinement. It can be concluded that the model is applicable to the urban flood simulation in case the effects of sewer and stormwater drainage system on flooding are relatively small like the dam brake.

Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values (격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할)

  • Kim Ku-Jin;Baek Nakhoon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1369-1382
    • /
    • 2005
  • Vehicle segmentation, which extracts vehicle areas from road scenes, is one of the fundamental opera tions in lots of application areas including Intelligent Transportation Systems, and so on. We present a vehicle segmentation approach for still images captured from outdoor CCD cameras mounted on the supporting poles. We first divided the input image into a set of two-dimensional grids and then calculate the feature values of the edges for each grid. Through analyzing the feature values statistically, we can find the optimal rectangular grid area of the vehicle. Our preprocessing process calculates the statistics values for the feature values from background images captured under various circumstances. For a car image, we compare its feature values to the statistics values of the background images to finally decide whether the grid belongs to the vehicle area or not. We use dynamic programming technique to find the optimal rectangular gird area from these candidate grids. Based on the statistics analysis and global search techniques, our method is more systematic compared to the previous methods which usually rely on a kind of heuristics. Additionally, the statistics analysis achieves high reliability against noises and errors due to brightness changes, camera tremors, etc. Our prototype implementation performs the vehicle segmentation in average 0.150 second for each of $1280\times960$ car images. It shows $97.03\%$ of strictly successful cases from 270 images with various kinds of noises.

  • PDF

Optimal Mesh Size in Three-Dimensional Arbitrary Lagrangian-Eulerian Method of Free-air Explosions (3차원 Arbitrary Lagrangian-Eulerian 기법을 사용한 자유 대기 중 폭발 해석의 최적 격자망 크기 산정)

  • Yena Lee;Tae Hee Lee;Dawon Park;Youngjun Choi;Jung-Wuk Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.355-364
    • /
    • 2023
  • The arbitrary Lagrangian-Eulerian (ALE) method has been extensively researched owing to its capability to accurately predict the propagation of blast shock waves. Although the use of the ALE method for dynamic analysis can produce unreliable results depending on the mesh size of the finite element, few studies have explored the relationship between the mesh size for the air domain and the accuracy of numerical analysis. In this study, we propose a procedure to calculate the optimal mesh size based on the mean squared error between the maximum blast pressure values obtained from numerical simulations and experiments. Furthermore, we analyze the relationship between the weight of explosive material (TNT) and the optimal mesh size of the air domain. The findings from this study can contribute to estimating the optimal mesh size in blast simulations with various explosion weights and promote the development of advanced blast numerical analysis models.

Computational Investigations of Adverse Effects of Deploying Spoilers on Airfoil Aerodynamic Characteristics (스포일러 동적 작동에 따른 에어포일 공력특성 역전현상 연구)

  • Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.335-342
    • /
    • 2020
  • Tailless aircraft designed for stealth efficiency uses spoilers instead of rudders for the directional control. When the spoiler is rapidly deployed, highly nonlinear and unsteady aerodynamic characteristics can be generated, resulting in adverse effects on aircraft flight performance. This paper investigates the aerodynamic characteristics of an airfoil with moving spoiler using dynamic mesh CFD technique. The effects of spoiler operation speed, mounting location, and deployment scheduling are analyzed to reduce the adverse effects of the spoiler's dynamic operation. The results shows that the adverse effects of dynamic spoiler can be reduced by appropriate selection of the spoiler mounting location and deployment scheduling.

TEM Investigations of Structures and Phase Transitions in Tridymite (투과전자현미경을 이용한 Tridymite의 구조 및 상전이 연구)

  • 김윤중
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.44-58
    • /
    • 2002
  • A new polymorph of tridymite, an incommensurately modulated phase (IC phase), has been identified. While the symmetry of the IC lattice is same as that of the Ll phase, the geometry of the IC lattice structure is same as the basis of the L3 structure with a different modulation (modulation vector q=0.22 $c*_{H}$;$\lambda$ 37 ). On the other hand, the characteristic curved diffuse diffration observed from the Ll atoms could occur even at room phase suggests that the dynamic disordering of atoms, especially oxygen atoms could occur even at room temperature. The phase transition of Ll to L3 by grinding is gradual but very conspicuous: LllongrightarrowL1+IClongrightarrowIC+L3longrightarrowL3. However, it is revealed that real transition processes of individual grains are directly related to the local stress fields and preexisting microstructures.

Development of a Comprehensive Modeling System for Assessing Impact of Temporally and Spatially Changing BMP (시.공간적으로 변화하는 최적관리기법 평가를 위한 통합모형시스템 개발)

  • Cho, Jae-Pil;Chun, Jong-Ahn;Saied, Mostaghimi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.2
    • /
    • pp.15-27
    • /
    • 2009
  • 토지이용변화가 수질에 미치는 영향을 평가하기 위하여 비점오염모형이 광범위하게 사용되고 있다. 본 연구에서는 최적관리기법이 수문 수질에 미치는 영향을 평가하기위한 통합모형시스템을 개발하였다. 통합모형시스템은 DANSAT (Dynamic Agricultural Non-point Source Assessment Tool)과 사용자 인터페이스로 구성되어 있다. DANSAT은 분포형 연속 강우사상 모형으로서 농업소유역에서의 유출량, 유사량, 농약 물질의 이동기작 등을 모의한다. DANSAT은 크게 동적변수 부모형, 수문 부모형, 유사 이용 부모형, 농약 물질 이동 부모형등 4개의 부모형으로 구성되어있다. 동적변수 부모형은 토양의 특성, 작물의 생장 및 작물 잔여물질의 분해 등을 모의하는 하부모형으로 구성되어있으며, 토지 이용 변화에 관계되는 내부 변수들의 시간적 변화를 모의한다. 수문 부모형은 차단, 증발산량, 침투량, 침루량 등을 모의하는 격자 단위 프로세스와 지표유출, 중간유출, 기저유출 및 하천에서의 물의 이동을 모의하는 유역 단위 프로세스로 구성되어있다. 유사 이동 부모형은 세류간 (interrill) 토양입자의 분리, 세류 (rill) 및 하천내의 토양분리, 운송가능량 등을 모의하며, 농약 물질 이동 부모형은 농약의 분해, 평형, 식물에 의한 흡수, 침출 등을 고려하여 농약 물질의 이동을 모의한다. 입력변수는 최적관리기법의 시 공간적인 변화를 고려할 수 있도록 계층구조로 구성하였다. 유역출구에서의 결과 출력 뿐만 아니라, 유역전체에 걸쳐 지표면과 지하수면 사이에서 물 및 오염물질의 이동량 분석을 위한 출력 및 격자단위의 상세 결과 출력을 통하여 최적관리기법을 평가하고 분석할 수 있다. 한편, 사용자 인터페이스는 모형의 구동을 위해 요구되는 광범위한 시 공간 입력 자료를 기존에 존재하는 데이터베이스를 이용하여 생성할 수 있도록 개발되었다.

Generating high resolution of daily mean temperature using statistical models (통계적모형을 통한 고해상도 일별 평균기온 산정)

  • Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1215-1224
    • /
    • 2016
  • Climate information of the high resolution grid units is an important factor to explain the phenomenon in a variety of research field. Statistical linear interpolation models are computationally inexpensive and applicable to any climate data compared to the dynamic simulation method at regional scales. In this paper, we considered four different linear-based statistical interpolation models: general linear model, generalized additive model, spatial linear regression model, and Bayesian spatial linear regression model. The climate variable of interest was the daily mean temperature, where the spatial variability was explained using geographic terrain information: latitude, longitude, elevation. The data were collected by weather stations in January from 2003 and 2012. In the sense of RMSE and correlation coefficient, Bayesian spatial linear regression model showed better performance in reflecting the spatial pattern compared to the other models.

Vorticity Based Analysis of the Viscous Flow around an Impulsively Started Cylinder (와도를 기저로 한 초기 순간 출발하는 실린더 주위의 점성유동해석)

  • Kwang-Soo Kim;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • This paper presents a vorticity-based numerical method for analyzing an incompressible Newtonian viscous flow around an impulsively started cylinder. The Navier-Stockes equations have a natural Helmholtz decomposition. The vorticity transport equation and the pressure equation are derived from this decoupled form. The associated boundary conditions are dynamic for the vorticity and pressure variables representing the coupling relation between them and the force balance on the wall. The various numerical treatments for solving the governing equations are introduced. According to Wu et al.(1994), the boundary conditions are decoupled, keeping the dynamic relation between vorticity and pressure. The vorticity transport equation is formulated by FVM and TVD(Total Variation Diminishing) scheme is used for the convection term. An integral approach similar to the panel method is used to obtain the velocity field for a given vorticity field and the pressure field, instead of the conventional differential approaches. In the numerical process, the structured grid is generated. The results are compared to existing numerical and analytic results for the validity of the present method.

  • PDF

Task Allocation and Path Planning for Multiple Unmanned Vehicles on Grid Maps (격자 지도 기반의 다수 무인 이동체 임무 할당 및 경로 계획)

  • Byeong-Min Jeong;Dae-Sung Jang;Nam-Eung Hwang;Joon-Won Kim;Han-Lim Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.56-63
    • /
    • 2024
  • As the safety of unmanned vehicles continues to improve, their usage in urban environments, which are full of obstacles such as buildings, is expected to increase. When numerous unmanned vehicles are operated in such environments, an algorithm that takes into account mutual collision avoidance, as well as static and dynamic obstacle avoidance, is necessary. In this paper, we propose an algorithm that handles task assignment and path planning. To efficiently plan paths, we construct a grid-based map and derive the paths from it. To enable quick re-planning in dynamic environments, we focus on reducing computational time. Through simulation, we explain obstacle avoidance and mutual collision avoidance in small-scale problems and confirm their performance by observing the entire mission completion time (Makespan) in large-scale problems.