• Title/Summary/Keyword: 동적이완법

Search Result 16, Processing Time 0.017 seconds

Shape Finding of Cable-Net Structures by Using Modified Dynamic Relaxation Method (변형된 동적이완법을 이용한 케이블-네트 구조물의 형상해석)

  • 하창우;김재열;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.51-58
    • /
    • 2000
  • Dynamic relaxation method is a shape finding analysis method for flexible structures by introducing the dynamic equilibrium equation. However, it is difficult for shape finding to estimate the most appropriate values for the mass and damping on each shape because the values are random one. In this study, the unit mass, the unit damping and the principal direction stiffness are utilized to avoid the random values, and the Newmarks assumption is introduced during the dynamic analysis. By introducing variant time increment method presented, the convergence time is reduced, that is, it can be reduced the total times for analysis.

  • PDF

A Comparative Analysis of GBEF According to Image Aquisition Method in Hepatobiliary Scan (간담도스캔의 영상수집방법에 따른 담즙배출율의 비교분석)

  • Kim, Yeong-Seon;Seo, Myeong-Deok;Lee, Wan-Kyu;Song, Jae-Beom
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2014
  • Purpose The quantitative analysis of gallbladder emptying is very important in diagnosis of motility disorder of gallbladder and in biliary physiology. The GBEF obtain the statics aquisition method or the dynamic acquisition method in two ways. The purpose of this study is to compare the GBEF value of statics acquisition method and the dynamic acquisition method. And we find the best way for calculate GBEF. Materials and Methods The quantitative hepatobiliary scan with $^{99m}Tc$-mebrofenin was performed of 27 patients. Initial images were acquired statically, for 60 min after injection of the radioactive tracer. And if the gallbladder is visualized to 60 min, performed stimulation of gallbladder (1egg, 200 mL milk). After that, started acquisition of dynamic image for 30 min. After that, image of after fatty meal of the statics method were acquired on equal terms with 60 min image. The statics GBEF was calculated using the images of before fatty meal and post fatty meal by the statics method. The dynamic GBEF was calculated using the images of time of maximum bile juice uptake ($T_{max}$) and time of minimum bile juice uptake ($T_{min}$) images from the gallbladder time-activity curve. A bile juice is secreted from gallbladder while eating a fatty meal. that is named early GBEF and that was calculated using before fatty meal image of the statics method and 1 min image of the dynamic method. Results The result saw very big difference between two according to $T_{max}$. The result, were as follows. 1) In case of less than 1 min, the dynamic mean GBEF was $40.1{\pm}21.7%$, the statics mean GBEF was $51.5{\pm}23.6%$ in 16 cases. The early mean GBEF was $14.0{\pm}29.1%$. The GBEF of statics method was higher because that include secreted bile juice while performed stimulation of gallbladder. A difference of GB counts according to acquisition method and the early bile juice counts was $17.6{\pm}14.8%$ and $13.5{\pm}15.3%$. 2) In case of exceed than 1 min, the dynamic mean GBEF was $31.0{\pm}19.7%$, the statics mean GBEF was $21.3{\pm}19.4%$ in 7 cases. The early GBEF was $-6.9{\pm}4.9%$. The GBEF of dynamic method was higher because that include concentrated bile juice to $T_{max}$. A difference of GB counts according to acquisition method and the early bile juice counts was $14.3{\pm}7.3%$ and $5.9{\pm}3.9%$. Conclusion The statics method is very easy and simple, but in case of $T_{max}$ delay, the GBEF can be lower. The dynamic method is able to calculate accurately in case of $T_{max}$ delay, but in case of $T_{max}$ is less than 1 min, the GBEF can be lower because dynamic GBEF exclude secreted bile juice while performed stimulation of gallbladder. The best way to calculate GBEF is to scan with dynamic method preferentially and to choose suitable method between the two way after conform $T_{max}$ on the T-A curve of the dynamic method.

  • PDF

A study on the dynamic characteristics of bellows (벨로우즈의 동특성에 관한 연구)

  • 이완식;오재응;김태완
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1273-1281
    • /
    • 1988
  • In this study, the dynamic characteristics of Bellows, used for expansion joint, were investigate by F.E.M. Using the axisymmetric conical frustum element, the natural frequencies, modevectors and the parameters governing the dynamic characteristics of Bellows were also investigated. Through the experiment, it was shown that the results calculated by finite element method and measured experimental values were in good agreement.

Geodesic Shape Finding Algorithm for the Pattern Generation of Tension Membrane Structures (막구조물의 재단도를 위한 측지선 형상해석 알고리즘)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • Patterning with a geodesic line is essential for economical or efficient usage of membrane materialsin fabric tension membrane structural engineering and analysis. The numerical algorithm to determine the geodesic line for membrane structures is generally classified into two. The first algorithm finds a non-linear shape using a fictitious geodesic element with an initial pre-stress, and the other algorithm is the geodesic line cutting or searching algorithm for arbitrarily curved 3D surface shapes. These two algorithms are still being used only for the three-node plane stress membrane element, and not for the four-node element. The lack of a numerical algorithm for geodesic lines with four-node membrane elements is the main reason for the infrequent use of the four-node membrane element in membrane structural engineering and design. In this paper, a modified numerical algorithm is proposed for the generation of a geodesic line that can be applied to three- or four-node elements at the same time. The explicit non-linear static Dynamic Relaxation Method (DRM) was applied to the non-linear geodesic shape-finding analysis by introducing the fictitiously tensioned 'strings' along the desired seams with the three- or four-node membrane element. The proposed algorithm was used for the numerical example for the non-linear geodesic shape-finding and patterning analysis to demonstrate the accuracy and efficiency, and thus, the potential, of the algorithm. The proposed geodesic shape-finding algorithm may improve the applicability of the four-node membrane element for membrane structural engineering and design analysis simultaneously in terms of the shape-finding analysis, the stress analysis, and the patterning analysis.

Non-Fickian Diffusion of Organic Solvents in Fluoropolymeys (불소고분자내 유기용매의 비-픽 확산)

  • 이상화
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.24-34
    • /
    • 2004
  • Transient sorption experiments were conducted among several combinations of fluoropolymers and various organic solvents. Fully fluorinated polymer tended to exhibit ideal sorption behavior, while partially fluorinated polymers showed anomalous sorption behaviors with a drastic acceleration at the final stage of uptake. Minimization of least-squares of the measured and predicted fractional uptake, which indicated the increasing degree of deviation from Fickian diffusion, gave values of 3.0${\times}$10$\^$-4/, 1.75${\times}$10$\^$-3/, 8.68${\times}$10/sup-3/, 1.75${\times}$10$\^$-2/, respectively, for perfluoroalkoxy copolymer, poly(ethylene-co-tetrafluoroethylene), poly(vinylidene fluoride), poly(ethylene-co-chlorotrifluoroethylene). From stress-strain tests, it was confirmed that non-Fickian diffusion is closely related to the significant variation of mechanical properties (such as modulus and tensile strength) of swollen polymer. Anomalous sorption behavior stemmed from non-Fickian diffusion caused by nonlinear disruption of polar inter-segmental bonds due to solvent-induced plasticization. Thus, it is imperative to investigate the diffusion behavior of swelling solvents in partially fluorinated polymers, especially for the application to barrier materials or perm-selective membranes.

A Study on Secondary Lining Design of Tunnels Using Ground-Lining Interaction Model (지반-라이닝 상호작용 모델을 이용한 터널 2차라이닝 설계에 관한 연구)

  • Chang, Seok-Bue;Huh, Do-Hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.365-375
    • /
    • 2006
  • The structural analysis for the secondary lining of tunnels is generally performed by a frame analysis model. This model requires a ground loosening load estimated by some empirical methods, but the load is likely to be subjective and too large. The ground load acting on the secondary lining is due to the loss of the supporting function of the first support members such as shotcrete and rockbolts. Therefore, the equilibrium condition of the ground and the first support members should be considered to estimate the ground load acting on the secondary lining. Ground-lining interaction model, shortly GLI model, is developed on the basis of the concept that the secondary lining supports the ground deformation triggered by the loss of the support capacity of the first support members. Accordingly, the GLI model can take into account the ground load reflecting effectively not only the complex ground conditions but the installed conditions of the first support members. The load acting on the secondary lining besides the ground load includes the groundwater pressure and earthquake load. For the structural reinforcement of the secondary lining based on the ultimate strength design method, the factored load and various load combination should be considered. Since the GLI model has difficulty in dealing with the factored load, introduced in this study is the superposition principle in which the section moment and force of the secondary lining estimated for individual loads are multiplied by the load factors. Finally, the design method of the secondary lining using the GLI model is applied to the case of a shallow subway tunnel.