• Title/Summary/Keyword: 동적기능시험

Search Result 52, Processing Time 0.019 seconds

A Study On The Thermal Movement Of The Reactor Coolant System For PWR (가압 경수로의 냉각재 계통 열팽창 거동에 관한 연구)

  • Yoon, Ki-Seok;Park, Taek sang;Kim, Tae-Wan;Jeon, Jang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.393-402
    • /
    • 1995
  • The structural analysis of the reactor coolant system mainly consist of too fields. The one is the static analysis considering the impact of pressure and temperature built up during normal operation. The other is the dynamic analysis to estimate the impact of postulated events such as the seismic loads or postulated branch line pipe breaks event. Since the most important goal of the RCS structural analysis is to prove the safety of the RCS during normal operation or postulated events, a widely proven theory having enough conservatism is adopted. The load occurring on the RCS during normal operation is considered as the basic design loading condition throughout whole plant life time. The most typical characteristic of the RCS during normal operation is the thermal expansion of the RCS caused by reactor coolant with high temperature and pressure. Therefore, the exact estimation on the thermal movement of the RCS is needed to get more clear understanding on the thermal movement behavior of the RCS. In this study, the general structural analysis concept and modeling method to evaluate the thermal movement of the RCS under the normal plant operation condition are presented. To discuss the validation of the suggested analysis, analysis results are compared with the measured data which ore referred from the standardized 1000 MWe PWR plant under construction.

  • PDF

An Efficient Congestion Control Mechanism for Tree-based Many-to-many Reliable Multicast (트리 기반의 다대다 신뢰적 멀티캐스트를 위한 효율적인 혼잡 제어 기법)

  • 유제영;강경란;이동만
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.5
    • /
    • pp.656-667
    • /
    • 2003
  • Congestion control is a key task in reliable multicast along with error control. However, existing tree-based congestion control schemes such as MTCP and TRAMCC are designed for one-to-many reliable multicast and have some drawbacks when they are used for many-to-many reliable multicast. We propose an efficient congestion control mechanism, TMRCC, for tree-based many-to-many reliable multicast protocols. The proposed scheme is based on the congestion windowing mechanism and a rate controller is used in addition. The feedback for error recovery is exploited for congestion control as well to minimize the overhead at the receivers. The ACK timer and the NACK timers are set dynamically reflecting the network condition changes. The rate regulation algorithm in the proposed scheme is designed to help the flows sharing the same link to achieve the fair share quickly The performance of the proposed scheme is evaluated using ns-2. The simulation results show that the proposed scheme outperforms TRAMCC in terms of intra- session fairness and shows good level of responsiveness, TCP-friendliness, and scalability. In addition, we implemented the proposed scheme by integrating with GAM that is one of many-to-many reliable multicast protocols and evaluated the performance in a laboratory-wide testbed.