• Title/Summary/Keyword: 동일채널간섭

Search Result 298, Processing Time 0.024 seconds

Performance Improvement of MMA Adaptive Equalization Algorithm by using the Constellation Reduction in QAM Signal (QAM 신호에서 Constellation Reduction을 이용한 MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.103-109
    • /
    • 2014
  • This paper related with the CR-MMA which is possible to improving the equalization performance by applying the concept of constellation reduction in the MMA adaptive equalization alogorithm in order to reduce the intersymbol interference that is occurred in the nonlinear communication channel. In the updating process of MMA adaptive equalizer, the error signal is being obtained by using the equalizer output, and the performance will be degraded by the increase the error signal in the high order QAM constellation. But by using the constellation reduction, the high order QAM signal will be changed to the 4-QAM signal constellation and then the error signal will be obtained. By doing so, the error signal will be minimized and it is possible to improve the equalization performance in the high order QAM transmitted signal. The Computer simulation was performed in order to compare the performance of the proposed CR-MMA algorithm and original MMA algorithm in the same communication channel and noise environment. For this, the recoverd signal constellation which is the output of equalizer, residual isi and MD (Maximum Distortion) learning curve which is represents the convergence performance and SER which is represents the roburstness of noise were used. As a result of simulation, the CR-MMA has more superior to the MMA. And it was confirmed that the CR-MMA has roburstness to the noise in the SER performance.

Outage Probability and Throughput Management Using CoMP under the Coexistence of PS-LTE and LTE-R Networks (안전망과 철도망 공존환경에서 협력통신을 이용한 아웃티지 및 수율 관리)

  • Lim, WonHo;Jeong, HyoungChan;Ahmad, Ishtiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • In the Republic of Korea, the LTE-based public safety (PS-LTE) network is being built for the 700 MHz frequency band. However, the same bands are also assigned to the LTE-based high-speed railway (LTE-R) network. Therefore, it is essential to utilize the co-channel interference management schemes for the coexistence of two LTE networks in order to increase the system throughput and to reduce the user outage probability. In this paper, we focus on the downlink (DL) system for the coexistence of PS-LTE and LTE-R networks by considering non radio access network (RAN) sharing and LTE-R RAN sharing by PS-LTE users (UEs) to analyze the UE throughput. Moreover, we also utilize the cooperative communications schemes, such as coordinated multipoint (CoMP) for the coexistence of PS-LTE and LTE-R networks in order to reduce the UE outage probability. We categorize the coexistence of PS-LTE and LTE-R networks into four different scenarios, and evaluate the performance of each scenario by the important performance indexes, such as UE average throughput and UE outage probability.

RFID Reader Anti-collision Algorithm using the Channel Monitoring Mechanism (채널 모니터링 기법을 이용한 RFID 리더 충돌방지 알고리즘)

  • Lee Su-Ryun;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.35-46
    • /
    • 2006
  • When an RFID reader attempts to read the tags, interference might occur if the neighboring readers also attempt to communicate with the same tag at the same time or the neighboring readers use the same frequency simultaneously. These interferences cause the RFID reader collision. When the RFID reader collision occurs, either the command from the reader cannot be transmitted to the tags or the response of the tags cannot receive to the reader correctly, Therefore, the international standard for RFID and some papers proposed the methods to reduce the reader collision. Among those, Colorwave and Enhanced Colorwave is the reader anti-collision algorithm using the frame slotted ALOHA based a TDM(Time Division Multiplex) and are able to reduce the reader collision because theses change the frame size according to a collision probability. However, these can generate the reader collisions or interrupt the tag reading of other readers because the reader that collides with another reader randomly chooses a new slot in the frame. In this paper, we propose a new RFID reader anti-collision algorithm that each reader monitors the slots in the frame and chooses the slot having the minimum occupation probability when the reader collision occurs. Then we analyze the performance of the proposed algorithm using simulation tool.

Data Transmission Rate Improvement Scheme in Power Line Communication System for Smart Grid (스마트 그리드를 위한 전력선 통신 시스템에서의 데이터 전송률 향상 기법)

  • Kim, Yo-Cheol;Bae, Jung-Nam;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1183-1191
    • /
    • 2010
  • In this paper, I propose an adaptive OFDM CP length algorithm for in PLC systems for smart grid. The proposed scheme calculates the channel delay information at the CP controller of the receiver by taking correlation between a received data frame and the following delayed one. The CP controller, immediately, feeds back the channel delay information to the transmitter. Then, the transmitter adapts CP length for next data frame. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of packet data rate, cumulative packet data rate, and bit error rate (BER). The simulation results showed data gain (which is the amount of the reduced bits) gets larger as the number of packets increase, but the amount of data gain reduced as the number of branches ($N_{br}$) increase. In respects of BER for the cases $N_{br}$ is 3, 4, and 5, performance of the adaptive CP length algorithm and the fixed CP scheme are similar. Therefore, it is confirmed the proposed scheme achieved data rate increment without BER performance reduction compared to the conventional fixed CP length scheme.

Power Allocation Scheme For Mobile Communication Systems Using Directional Transmission (방향성 전송을 사용하는 이동통신 시스템을 고려한 파워 할당 방안)

  • Lee, Woongsup;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2621-2627
    • /
    • 2014
  • Directional transmission is one of key technology to solve the utmost problem that current mobile communication system faces, which is explosively increasing data traffic, since directional transmission can maximize the throughput of mobile communication systems. In this work, we consider power allocation scheme for mobile communication system which utilizing directional transmission. Especially, we consider the case in which multiple users in the same sector of base station, are served at the same time by utilizing directional transmission. For this scenarios, we consider equal power allocation scheme, Water-filling based scheme and inverse SNR scheme. Moreover, we propose beam power allocation scheme whose objective is to maximize overall system throughput by taking into account interference between different directional transmissions. Moreover, we have examined the spectral efficiency and Jain's fairness index of various power allocation schemes for directional transmission by using system level simulator that has been developed in our previous work. Through simulations, it has been verified that the proposed power allocation scheme can improve the spectral efficiency of the system by 28%.

Improvement of LMS Algorithm Convergence Speed with Updating Adaptive Weight in Data-Recycling Scheme (데이터-재순환 구조에서 적응 가중치 갱신을 통한 LMS 알고리즘 수렴 속 도 개선)

  • Kim, Gwang-Jun;Jang, Hyok;Suk, Kyung-Hyu;Na, Sang-Dong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.4
    • /
    • pp.11-22
    • /
    • 1999
  • Least-mean-square(LMS) adaptive filters have proven to be extremely useful in a number of signal processing tasks. However LMS adaptive filter suffer from a slow rate of convergence for a given steady-state mean square error as compared to the behavior of recursive least squares adaptive filter. In this paper an efficient signal interference control technique is introduced to improve the convergence speed of LMS algorithm with tap weighted vectors updating which were controled by reusing data which was abandoned data in the Adaptive transversal filter in the scheme with data recycling buffers. The computer simulation show that the character of convergence and the value of MSE of proposed algorithm are faster and lower than the existing LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of LMS algorithm.

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.

Multi-user Diversity Scheduling Methods Using Superposition Coding Multiplexing (중첩 코딩 다중화를 이용한 다중 사용자 다이버시티 스케줄링 방법)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.332-340
    • /
    • 2010
  • In this paper, we deal with multi-user diversity scheduling methods that transmit simultaneously signals from multiple users using superposition coding multiplexing. These methods can make various scheduling methods be obtained, according to strategies for user selection priority from the first user to the first-following users, strategies for per-user power allocation, and resulting combining strategies. For the first user selection, we consider three strategies such as 1) higher priority for a user with a better channel state, 2) following the proportional fair scheduling (PFS) priority, 3) higher priority for a user with a lower average serving rate. For selection of the first-following users, we consider the identical strategies for the first user selection. However, in the second strategy, we can decide user priorities according to the original PFS ordering, or only once an additional user for power allocation according to the PFS criterion by considering a residual power and inter-user interference. In the strategies for power allocation, we consider two strategies as follows. In the first strategy, it allocates a power to provide a permissible per-user maximum rate. In the second strategy, it allocates a power to provide a required per-user minimum rate, and then it reallocates the residual power to respective users with a rate greater than the required minimum and less than the permissible maximum. We consider three directions for scheduling such as maximizing the sum rate, maximizing the fairness, and maximizing the sum rate while maintaining the PFS fairness. We select the max CIR, max-min fair, and PF scheduling methods as their corresponding reference methods [1 and references therein], and then we choose candidate scheduling methods which performances are similar to or better than those of the corresponding reference methods in terms of the sum rate or the fairness while being better than their corresponding performances in terms of the alternative metric (fairness or sum rate). Through computer simulations, we evaluate the sum rate and Jain’s fairness index (JFI) performances of various scheduling methods according to the number of users.