• Title/Summary/Keyword: 동역학 연구

Search Result 1,023, Processing Time 0.028 seconds

Structural and functional characteristics of rock-boring clam Barnea manilensis (암석을 천공하는 돌맛조개(Barnea manilensis)의 구조 및 기능)

  • Ji Yeong Kim;Yun Jeon Ahn;Tae Jin Kim;Seung Min Won;Seung Won Lee;Jongwon Song;Jeongeun Bak
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.

Effect of Hypotonic and Hypertonic Solution on Brining Process for Pork Loin Cube: Mass Transfer Kinetics (돼지고기 등심의 염지공정에서 소금농도의 영향: 물질전달 동역학을 중심으로)

  • Park, Min;Lee, Nak Hun;In, Ye-Won;Oh, Sang-Yup;Cho, Hyung-Yong
    • Food Engineering Progress
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • The impregnation of solid foods into the surrounding hypotonic or hypertonic solution was explored as a method to infuse NaCl in pork loin cube without altering its matrix. Mass transfer kinetics using a diffusive model as the mathematical model for moisture gain/loss and salt gain and the resulting textural properties were studied for the surrounding solutions of NaCl 2.5, 5.0, 10.0 and 15% (w/w). It was possible to access the effects of brine concentration on the direction of the resulting water flow, quantify water and salt transfer, and confirm tenderization effect by salt infusion. For brine concentrations up to 10% it was verified that meat samples gained water, while for processes with 15% concentration, pork loin cubes lost water. The effective diffusion coefficients of salt ranged from 2.43×10-9 to 3.53×10-9 m2/s, while for the values of water ranged from 1.22×10-9 to 1.88×10-9 m2/s. The diffusive model was able to represent well salt gain rates using a single parameter, i.e. an effective diffusion coefficient of salt through the meat. However, it was not possible to find a characteristic effective diffusion coefficient for water transfer. Within the range of experimental conditions studied, salt-impregnated samples by 5% (w/w) brine were shown with minimum hardness, chewiness and shear force.

Teleseismic Travel Time Tomography for the Mantle Velocity Structure Beneath the Melanesian Region (원거리 지진 주시 토모그래피를 이용한 멜라네시아 지역의 맨틀 속도 구조 연구)

  • Jae-Hyung Lee;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • The Melanesian region in the western Pacific is dominated by complex plate tectonics, with the largest oceanic plateau, the OntongJava plateau, and a hotspot, the Caroline Islands. To better understand the complex geodynamics of the region, we estimate P- and S-velocity models and 𝛿 (VP/VS) model by using relative teleseismic travel times measured at seismometers on land and the seafloor. Our results show high-velocity anomalies in the subduction zones of the Melanesian region to a depth of about 400 km, which is thought to be subducting Solomon Sea, Bismarck, and Australian plates along plate boundaries. Along subduction zones, positive 𝛿 (VP/VS) anomalies are found, which may be caused by partial melting due to dehydration. A broad high-velocity anomaly is observed at 600 km depth below the Ontong-Java plateau, with a negative 𝛿 (VP/VS) anomaly. This is thought to be a viscous and dry remnant of the Pacific plate that subducted at 45-25 Ma, with a low volume of fluids due to dehydration for a long period in the mantle transition zone. Beneath the Caroline Islands, a strong low-velocity anomaly is obseved to a depth of 800 km and appears to be connected to the underside of the remnant Pacific plate in the mantle transition zone. This suggests that the mantle plume originating in the lower mantle has been redirected due to the interaction with the remnant Pacific plate and has reached its current location. The mantle plume also has a positive 𝛿 (VP/VS) anomaly, which is thought to be due to the influence of embedded fluids or partial melting. A high-velocity anomaly, interpreted as an effect of the thick lithosphere beneath the Ontong-Java plateau, is observed down to 300 km depth with a negative 𝛿 (VP/VS) anomaly, which likely indicate that little fluid remains in the melt residue accumulated in the lithosphere.