• Title/Summary/Keyword: 동역학계수

Search Result 67, Processing Time 0.022 seconds

Biological reduction of perchlorate containing high salinity (퍼클로레이트의 생물학적 환원에 나이트레이트가 주는 영향)

  • Jun, Moonhwee;Hwang, Jungwon;Lee, Jihee;Lee, Kanghoon;Yeom, Icktae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.277-277
    • /
    • 2015
  • 본 연구는 퍼클로레이트의 생물학적 환원 과정에 있어서 나이트레이트의 존재가 미생물에게 어떤 영향을 미치는지를 실험을 통해서 알아보고 적절한 모델링 접근을 통하여 나이트레이트의 퍼클로레이트 환원에 대한 저해의 정량적 분석을 위한 요소들을 도출하기 위해 수행되었다. 100mL 합성폐수를 포함하는 플라스크를 이용한 실험이 수행되었고, 유일 탄소원으로 아세트산나트륨이 사용되었고, 전자수용체로는 퍼클로레이트와 나이트레이트가 사용되었다. 먼저 퍼클로레이트와 나이트레이트 각각을 단일전자수용체로서 넣은 실험을 진행하였다. 퍼클로레이트의 동역학계수 qmax, Ks, Y, b값은 각각 0.9(mgClO4-/mgMLSSday), 42.28(mgClO4-/L), 0.382(mgClO4-/mgMLSS), 0.05(day-1)로 계산되었다. 그리고 나이트레이트의 동역학 계수 qmax, Ks, Y, b값은 각각 13.81(mgNO3-/mgMLSSday), 239.78(mgNO3-/L), 0.275(mgNO3-/mgMLSS), 0.05(day-1)로 계산되었다. 나이트레이트와 퍼클로레이트를 동시에 넣었을 경우에는 나이트레이트의 동역학 계수는 qmax, Ks, Y, b 값은 각각 13.72(mgClO4-/mgMLSSday), 235.64(mgClO4-/L), 0.263(mgClO4-/mgMLSS), 0.05(day-1)로 큰차이 없었으나, 퍼클로레이트의 경우에는 qmax, Ks, Y, b값은 각각 0.6(mgClO4-/ mgMLSSday), 42.24(mgClO4-/L), 0.393(mgClO4-/mgMLSS), 0.05(day-1)로 qmax값은 감소하였고, Y값은 증가하는 모습을 보임으로써, 나이트레이트의 존재가 퍼클로레이트의 환원을 저해시키는 것을 확인할 수 있었다.

  • PDF

Estimation of the Hydrodynamic Coefficients for the Deep-sea UUV "HEMIRE" (심해용 무인 잠수정의 동역학 계수의 추정에 관한 연구)

  • Baek, Hyuk;Kim, Ki-Hun;Jun, Bong-Huan;Lee, Pan-Mook;Lim, Yong-Kon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.97-105
    • /
    • 2008
  • This paper represents the experimental identification of a finite-dimensional dynamical plant model for the HEMIRE Remotely Operated Vehicle. The experiments were conducted during sea trials in the East Sea in October 2006 and peer testing by the South Sea Research Institute in January 2007. A least-squares method was employed to identify decoupled single degree-of-freedom plant dynamical models for the X, Y, Z and heading degree-of-freedom from experimental data. The performance of the identified plant dynamical model was evaluated by directly comparing simulations of the identified plant model to the experimentally observed motion data from the actual vehicle.

Study on Mechanical Parameters of a Wheelset Influencing Derailment of Rolling Stock (철도차량탈선에 영향을 미치는 윤축의 기계적 인자에 관한 연구)

  • Oh, Hyun Sun;Koo, Jeong Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1207-1218
    • /
    • 2013
  • It is difficult to predict derailment with the existing derailment coefficient like Nadal's formula which is based on the contact forces between one wheel and rail. A new derailment coefficient model developed on a wheelset is able to make a better estimate about the climb derailment, slip derailment, roll over derailment, and mixed derailment types of these. Moreover, not only the mechanical factors considered in the existing derailment coefficients but also other various factors affecting derailment such as wheel unloading and loading, diameter of wheel, and locations of axle-box bearings can be covered with this new derailment coefficient model. That is, the derailment patterns which couldn't be solved with the existing formulas such as Nadal's and Weinstock's models can be analyzed with this wheelset derailment coefficient model because of considering various factors causing derailment. Finally, the validity of the new derailment coefficient model is verified using dynamic model simulations.

Analysis of Dynamic Characteristics for Concept Design of Independent-Wheel Type Ultra-High-Speed Train (독립차륜형 초고속 열차 개념 설계안의 동특성 해석)

  • Lee, Jin-Hee;Kim, Nam-Po;Sim, Kyung-Seok;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • In this paper, a concept design of a rail type ultra-high-speed train is proposed and its dynamic characteristics are analyzed. Instead of the existing solid axle, a new type bogie system and independently rotating wheels are applied in the proposed train. In order to analyze the dynamic characteristics, a multibody dynamic model of a vehicle is developed and the basic validity is verified by eigenvalue analysis. Also, it is shown that the critical speed is improved in comparison to that of existing high-speed train model HEMU-430X. Finally, through 7000R curved track driving analysis at a speed of 550 km/h, the lateral force of the wheels and the derailment quotient are estimated and the applicability of the new concept railway vehicle is confirmed.

Analysis on the Lateral Stiffness of Coil Spring for Railway Vehicle (철도차량용 코일스프링 횡강성 해석)

  • Hur, Hyun-Moo;Ahn, Da-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.84-90
    • /
    • 2018
  • In constructing the multi-body dynamics model to analyze the behavior of the railway vehicle, it is very important to understand the properties of the suspension elements that constitute the suspension system. Among them, coil springs, which are mainly used in primary and secondary suspension systems, clearly show the axial stiffness in the drawings, but the lateral properties of the coil springs are not specified clearly, making it difficult to construct a dynamic analysis model. Therefore, in this paper, the model for analyzing the lateral stiffness of the coil spring is examined. A finite element method was applied to analyze the lateral stiffness of the coil spring and numerical analysis was performed by applying the coil spring lateral stiffness analysis model proposed by Krettek and Sobczak. And the test to analyze the lateral stiffness of coil spring was conducted. As a result of comparing with the test results, it was found that the results obtained by applying the lateral stiffness analysis model of Krettek and Sobczak and correcting the correction coefficient are similar to those of the test results.

Simple Kinematic Model Generation by Learning Control Inputs and Velocity Outputs of a Ship (선박의 제어 입력과 속도 출력 학습에 의한 단순 운동학 모델 생성)

  • Kim, Dong Jin;Yun, Kunhang
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.284-297
    • /
    • 2021
  • A simple kinematic model for the prediction of ship manoeuvres based on trial data is proposed in this study. The model consists of first order differential equations in surge, sway, and yaw directions which simulate the time series of each velocity component. Actually instead of sea trial data, dynamic model simulations are conducted with randomly varied control inputs such as propeller revolution rates and rudder angles. Based on learning of control inputs and velocity outputs of dynamic model simulations in sufficient time, kinematic model coefficients are optimized so that the kinematic model can be approximately reproduce the velocity outputs of dynamic model simulations with arbitrary control inputs. The resultant kinematic model is verified with new dynamic simulation sets.

Estimator Design for Road Friction Coefficient and Body Sideslip Angle for Use in Vehicle Dynamics Control Systems (차량 동역학 제어기를 위한 노면 마찰계수 및 차체 미끄럼각 추정기 설계)

  • 박기홍;허승진;백인호;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.176-184
    • /
    • 2001
  • The VDC(Vehicle Dynamics Control) is a control system whose target is to improve vehicle stability under critical motion. The system has a good potential of becoming a standard active safety unit in passenger vehicles since it can be implemented on top of the ABS/TCS system with little extra cost. This, however, is possible only when the signals that the VDC system demands can be obtained with sufficient accuracy. In this research, estimators for the road friction coefficient and body sideslip angle have been designed. The two variables have great influence upon performance of the VDC system but not directly measurable. For the estimator design, the Newton method and the nonlinear observer theory have been exploited. The performance of the estimator have been verified via simulations on critical driving conditions.

  • PDF

Study on the Static and Dynamic Stiffness Coefficients of Rubbers Connector by Using Finite Element Method (유한요소법을 이용한 고무 연결요소의 정-동강성 계수에 관한 연구)

  • 박노길;박성태
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.103-113
    • /
    • 1995
  • Since the mechanical properties of the rubber connectors used in the vehicle structures are sensitive on the dynamic characteristics of the system, they must be exactly evaluated. In this paper, both finite deformation theory and Hookean model are considered to calculate the stiffness coefficients of rubber connectors. An expert system is developed by using finite element method. When the equivalent stiffness coefficients on the same kinds of isolators used in actual vehicles were emperically examined, the results were largely dispersed due to the lack of the quality control on the material properties. To compensate the errors caused by the mathematical modeling and the mechanical properties, a practical method which identifies the shear and bulk moduli of rubber with the experimented overall force-deformation curves is suggested and applied to the engine isolators of vehicle.

  • PDF

Valve Dynamic Analysis of a High Pressure Reciprocating Compressor (고압 왕복동 압축기의 밸브 거동해석)

  • 이안성;홍용주;정영식;변용수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.107-111
    • /
    • 2002
  • A complex valve dynamic analysis has been performed with a high Pressure reciprocating gas compressor. Valve dynamic equations, which take into account the flow continuity and cylinder pressure fluctuation, have been derived. Flow coefficients of valves has been analyzed, using CFD models. Results have shown that both of the suction and discharge values behave favorably without any fluttering motions.

  • PDF