• Title/Summary/Keyword: 동아시아 여름몬순

Search Result 24, Processing Time 0.026 seconds

Comparison and Analysis of Characteristics of East Asian Monsoon Using Representative GCMs (대표 GCM을 이용한 동아시아 몬순 특성 비교 및 분석)

  • Lee, Eun-Jeong;Cho, Jaepil;Park, Jihoon;Jung, Imgook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.203-203
    • /
    • 2018
  • 기후변화로 인한 몬순 강수량 변동은 세계에서 가장 인구가 많은 몬순 지역의 농업, 수자원, 에너지, 경제 및 사회와 밀접한 관련이 있으므로, 미래의 몬순 강수량 변화를 예측하는 것은 매우 중요하다. 결합 모델 상호 비교 프로젝트의 5 단계(CMIP5)에서는 복사 강제력이 2100년 이후에 약 2.6, 4.5, 6.0 및 $8.5Wm^{-2}$의 증가로 안정화된다고 가정하는 4가지의 다양한 시나리오(RCP 2.6, 4.5, 6.0, 8.5) 자료를 제공하고 있다. 본 연구에서는 한반도의 강수량에 큰 영향을 미치는 동아시아 여름 몬순의 기후 변화에 대해 더욱 집중하고자 한다. CMIP5 모형 자료에 대하여 대표 GCM 모형 선정을 하기 위해, 수문 분야에서 활용 가능한 기후모델 성능 평가 matrix를 구축하였다. 본 연구에서 사용된 평가 matrix는 동아시아 및 한반도 지역을 대상으로 CMIP5 모형의 강수 및 최고?최저기온에 대한 평균 기후장(spatial climatology)과 연변동성(interannual variability)의 모사력을 각 모형별, 계절별 비교뿐만 아니라 극한기후 모사력도 함께 고려하여, 대표 GCM을 선정하였다. 기후변화에 따른 동아시아 지역의 몬순 특성을 더욱 자세히 살펴보기 위해, 대표 GCM으로 선정된 모형들의 2가지 시나리오(RCP4.5와 RCP.5)에 대해 동아시아 지역에서의 여름 몬순 강수 변동 및 특성을 분석 및 비교하였다.

  • PDF

Diagnosis of Northeast Asian Summer Precipitation using the Western North Pacific Subtropical High Index (북서태평양 아열대고기압 지수를 이용한 북동아시아 여름철 강수의 진단)

  • Kwon, MinHo
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.102-106
    • /
    • 2013
  • The intensity of the East Asian summer monsoon has a negative correlation with that of the western North Pacific summer monsoon. Based on the relationship, we suggest the potential predictability of Northeast Asian summer precipitation by using the relationship. The western North Pacific subtropical high (WNPSH) properly represents the intensity of the western North Pacific summer monsoon. It also dominates climate anomalies in the western North Pacific-East Asian region in summertime. The estimates of the Northeast Asian summer rainfall anomalies using WNPSH variability have a greater benefit than those using the western North Pacific monsoon index.

East Asian Monsoon History as Indicated by C/N Ratios and ${\delta}^{13}C$ Evidence from the Estuarine Tidal Flat Sediments in the West Coast of Korea (서해안 염하구 습지 퇴적물의 지화학적 분석 (C/N 및 ${\delta}^{13}C$)에 기반한 동아시아 몬순 변동 연구)

  • Park, Jung-Jae;Shin, Young-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.5
    • /
    • pp.541-552
    • /
    • 2010
  • Geochemical and physical investigations such as ${\delta}^{13}C$ isotope ratio, carbon/nitrogen (C/N) ratio, magnetic susceptibility (MS), and particle size analyses were carried out on the estuarine tidal flat sediments from the west coast of Korea in order to reconstruct the East Asian summer monsoon variability during the late Pleistocene and Holocene Our results indicated that the summer monsoon probably peaked around 7,700-7,800 yr BP and then started to decline about 7,400 yr BP in the Korean peninsular, and that the monsoon was relatively weak between 24,000-24,500 yr BP but relatively strong between 18,500-19,500 yr BP during the Last Glacial Maximum. Our estuarine geochemical data have proven to be valuable as a new proxy for detecting the shifts in monsoon strength. This new evidence will be helpful, especially for Korean paleoenvironmental studies with few proxy data archives.

The Interdecadal Variation of Relationship between Indian Ocean Sea Surface Temperature and East Asian Summer Monsoon (인도양 해수면 온도와 동아시아 여름 몬순의 관계에 대한 장주기 변동성)

  • Kim, Won-Mo;Jhun, Jong-Ghap;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.45-59
    • /
    • 2008
  • This study aims to analyze the interdecadal variation of relationship between Indian Ocean sea surface temperature (SST) and East Asian summer monsoon (EASM) during the period of 1948-2005. In the pre-period, which is from 1948 to 1975, the relationship between Indian Ocean SST and East Asian summer rainfall anomaly (EASRA) is very weak. However, in the post-period, which is trom 1980 to 2005, Indian Ocean SST is significantly positively correlated with EASRA. The equatorial Indian Ocean SST has a significantly positive correlation with EASM in spring, while Indian Ocean SST near the bay of Bengal has a positive relationship in summer for the post-period. Also the interdecadal variation of the correlation between Indian Ocean SST and EASRA is significant, but that between EASRA and the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) is not. Atmospheric general circulation model (AGCM) test results show the pattern of increased precipitation in the zonal belt region including South Korea and Japan and the pattern of decreased precipitation in the northeastern part of Asia, which are similar to the real climate. The increase of the precipitation in August from the model run is also similar to the real climate variation. Model results indicate that the Indian Ocean SST warming could intensify the convection over the vicinity of the Philippines and the Bay of Bengal, which forces to move northward the convection center. This warming strengthens the EASM and weakens the WNPM.

Simulation Skills of RegCM4 for Regional Climate over CORDEX East Asia driven by HadGEM2-AO (CORDEX 동아시아 지역에서 HadGEM2-AO를 경계조건으로 처방한 RegCM4의 상세 지역기후 모의성능)

  • Oh, Seok-Geun;Suh, Myoung-Seok;Cha, Dong-Hyun;Choi, Suk-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.732-749
    • /
    • 2011
  • In this study, 27-year (1979-2005) regional climate over the CORDEX East Asia domain was reproduced using a regional climate model, RegCM4, driven by HadGEM2-AO output, and the model's simulation skill was evaluated in terms of surface air temperature and precipitation. The RegCM4 reasonably simulated the spatial distribution and interannual variability and seasonal variability of surface air temperature, while it had systematic biases in the simulation of precipitation. In particular, simulated rainband of East Asian summer monsoon was southward shifted below $30^{\circ}N$ as compared with the observation, thereby, summer mean precipitation over South Korea was significantly underestimated. Simulated temperature from the RegCM4 driven by the HadGEM2-AO output was comparable to that driven by the reanalysis. However, the RegCM4 driven by the HadGEM2-AO had prominently poor skill in the simulation of precipitation. This can be associated with the distorted monsoon circulations in the driving data (i.e., HadGEM2-AO) such as southward shifted low-level southwesterly, which resulted in the erroneous evolution of East Asian summer monsoon simulated by RegCM4.

Observational Characteristics of East Asian Monsoon during the Summers of 1993 and 1994 (1993, 1994년 여름철 동아시아몬순의 관측 특성)

  • Kim, Baek-Jo;Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.369-379
    • /
    • 2002
  • The characteristics of the East Asian summer monsoon circulation associated with the cool and wet summer of 1993 and the warm and dry summer of 1994 are investigated by analyzing the atmospheric circulations features in the upper and lower troposphere and by examining the global SST and associated tropical convective precipitation fields. The negative geopotential height anomalies at 500 hPa and 200 hPa in 1993 over East Asia, the central North Pacific, and the western United States were replaced by positive ones in 1994. In addition, the 200 hPa zonal wind anomaly averaged over the East Asian summer monsoon region is negatively correlated with the Korean summer temperature anomaly. The subtropical jet stream in 1993 was displaced into the central part of Korea well south of its normal position. The western Pacific subtropical high was shifted southward, and the East Asian summer rainfall and temperature was above-normal and below-normal, respectively due to the southwestward extension of a cold and dry polar airmass from the Sea of Okhotsk to the Est Sea. In contrast, the subtropical jet stream in 1994 was displaced well north of its normal position. The abrupt northward shift of the western Pacific subtropical high was accompanied with the rapid northward movement of the rain band of the East Asian summer monsoon rainfall. The anomaly patterns of the East Asia summer rainfall and temperature were opposite to those of 1993. Large sea surface temperature anomalies of opposite signs existed in the tropical Pacific with a mature El $Ni{\~{n}o$ in 1993 and a weak La $Ni{\~{n}a$ condition in 1994. The role of the anomalous convective precipitation in the western Pacific and the Indian Ocean related with the variations in the low-level cross-equatorial flow along the northwestern periphery of the Australian high and the Mascarene high is probably to influence a large-scale atmospheric circulation over the East Asia during both the years.

The change of East Asian Monsoon to $CO_2$ increase

  • Kripalani, R.H.;Oh, J.H.;Chaudhari, H.S.
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.9-27
    • /
    • 2006
  • The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the 22 coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) following the multi-model ensemble (MME) technique. Results are based on averages of all the available models. The shape of the annual cycle with maximum during the summer monsoon period is simulated by the coupled climate models. However, models fail to simulate the minimum peak in July which is associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The MME precipitation pattern is able to capture the spatial distribution of rainfall associated with the location of the north Pacific subtropical high and the Meiyu-Changma-Baiu frontal zone. However precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions is underestimated. Future projections to the radiative forcing of doubled $CO_2$ scenario are examined. The MME reveals an increase in precipitation varying from 5 to 10 %, with an average of 7.8 % over the East Asian region at the time of $CO_2$ doubling. However the increases are statistically significant only over the Korea-Japan peninsula and the adjoining north China region. The increase in precipitation may be attributed to the projected intensification of the subtropical high, and thus the associated influx of moist air from the Pacific to inland. The projected changes in the amount of precipitation are directly proportional to the changes in the strength of the subtropical high. Further a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn is suggested.

  • PDF

Impacts of the High Resolution Land Cover Data on the 1989 East-Asian Summer Monsoon Circulation in a Regional Climate Model (지역기후모델에서 고해상도 지면피복이 1989년 동아시아 여름몬순 순환에 미치는 영향)

  • Suh, Myoung-Seok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.75-90
    • /
    • 2005
  • This study examines the impacts of land cover changes on the East Asia summer monsoon with the National Center for Atmospheric Research Regional Climate Model (NCAR RegCM2), coupled with Biosphere Atmosphere Transfer Scheme (BATS). To assess the goals, two types of land cover maps were used in the simulation of summer climate. One type was NCAR land cover map (CTL) and the other was current land cover map derived from satellite data (land cover: LCV). Warm and cold surface temperature biases of $1-3^{\circ}C$ occurred over central China and Mongolia in CTL. The model produced excessive precipitation over northern land area but less over southern ocean of the model domain. Changes of biophysical parameters, such as albedo, minimum stomatal resistance and roughness length, due to the land cover changes resulted in the alteration of land-atmosphere interactions. Latent heat flux and wind speed in LCV increased noticeably over central China where deciduous broad leaf trees have been replaced by mixed farm and irrigated crop. As a result, the systematic warm biases over central China were greatly reduced in LCV. Strong cooling of central China decreased pressure gradient between East Asian continent and Pacific Ocean. The decreased pressure gradient suppressed the northward transport of moisture from south China and South China Sea. These changes reduced not only the excessive precipitation over north China and Mongolia but also less precipitation over south China. However, the land cover changes increased the precipitation over the Korean Peninsula and the Japan Islands, especially in July and August.

On the characteristics of the 1993/1994 east Asian summer monsoon convective activities using GMS high cloud amount

  • ;;Moon, Sung-Euii;Sohn, Seoung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.1-21
    • /
    • 1995
  • The characteristics of the Asian summer monsoon have been investigated for the periods of 1993/1994, the contrasting years in a view of the summer monsoon precipitation. In order to investigate the monsoon features over the eastern Asian monsoon region, the cloudiness(using the extensive data derived by the geostationary meteorological satellite), the condition of underlying surface including sea-surface temperature, and the summer rainfall are analyzed and some comparisons with 1993 and 1994 are also made and the characteristic differences are discussed. An analysis of the 2-degree latitude-longitude gridded 5-day mean high cloud amount data shows the detailed movement and persistence of the convective activities. In order to describe the spatial and temporal structures of the intraseasonal oscillation for the movement and evolution of the monsoon cloud, the extended empirical orthogonal fnction analysis with the twenty-day window size is used for the each year. Also, in order to find out the periodicity of the equatorial convective cluster, Fourier harmonic analysis is applied to the each year. The most prevailing intraseasonal oscillations of high cloud amount are 61 day mode and 15day mode in the equatorial and the subtropical oceans. However it was found that the most prevailing modes over the equatorial western Pacific and Indian Ocean were different for each year, hence raising the possibillity that the contrasting monsoon presipitation may be more fundamentally related to the interaction of intraseasonal oscillations and seasonal variation of convective activities over the lower latitude ocean.

A Prediction of Northeast Asian Summer Precipitation Using the NCEP Climate Forecast System and Canonical Correlation Analysis (NCEP 계절예측시스템과 정준상관분석을 이용한 북동아시아 여름철 강수의 예측)

  • Kwon, MinHo;Lee, Kang-Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.88-94
    • /
    • 2014
  • The seasonal predictability of the intensity of the Northeast Asian summer monsoon is low while that of the western North subtropical high variability is, when state-of-the-art general circulation models are used, relatively high. The western North Pacific subtropical high dominates the climate anomalies in the western North Pacific-East Asian region. This study discusses the predictability of the western North Pacific subtropical High variability in the National Centers for Environmental Prediction Climate Forecast System (NCEP CFS). The interannual variability of the Northeast Asian summer monsoon is highly correlated with one of the western North Pacific subtropical Highs. Based on this relationship, we suggest a seasonal prediction model using NCEP CFS and canonical correlation analysis for Northeast Asian summer precipitation anomalies and assess the predictability of the prediction model. This methodology provides significant skill in the seasonal prediction of the Northeast Asian summer rainfall anomalies.