• Title/Summary/Keyword: 동아시아 몬순

Search Result 50, Processing Time 0.032 seconds

The Change of Water Vapor Transport due to Global Warming (지구 온난화에 따른 물 수송 변화)

  • Oh, Hyun-Taik;Kim, Jeong-Woo;Shin, Ho-Jeong;Choi, Young-Jean
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.109-119
    • /
    • 2004
  • This research is an analysis of the water vapor transport change Into the continent due to the global warming effect with the general circulation models. Water vapor transport change from ocean to land increases through the year due to CO2 doubling effect. In Eurasia, it indicates an increase about 170∼350${\times}$06 Mt/day the whole year. In Africa, it shows an decrease every month except November, especially there is the maximum decrease about -350${\times}$106 Mt/day during August-September. In other continents, excluding Eurasia and Africa, the change of water vapor transport vary with the month below $\pm$8.0${\times}$106 Mt/day with the unsystematic patterns. In Eurasia, the change of water vapor transport increases as a whole, but it decrease in desert areas which occupy a high area-ratio. Therefore, except desert areas, the amount of the growth in water vapor transport change concentrate on Asian monsoon area. As a result of monsoon strengthening, available water will grow considerably at the asian monsoon areas.

The 40~50Day Intraseasonal Oscillation of the Geostationary Meteorological Satellite High Cloud Amount (GMS 상층운량의 40~50일 계절만 진동)

  • 하경자;서애숙
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.619-633
    • /
    • 1996
  • Intraseasonal variability of the tropical convection over the Indian/western Pacific is studied using the Geostationary Meteorological Satellite high cloud amount. This study is directed to find the tropical-extratropical interaction in the frequency range of intraseasonal and interannual variabilities of the summer monsoon occured over the domain of 90E-171W and 495-50N. Especially, in order to investigate the intraseasonal interaction of last Asia summer monsoon associated with the tropical convections in the high cloud amounts, the spatial and time structure of the intraseasonal oscillation for the movement-and the evolution of the large-scale connections are studied. To describe the spatial and the time evolution, the extended empirical orthogonal function analysis is applied. The first mode may be considered to a normal structure, indicating that the strong convection band over 90E-120E is extended to sastward but this mode was detected as the intraseasonal variability during summer monsoon. It is found that the dominant intraseasonal mode of the tropical convection consists of the spatial changes over a broad period range centered around 40~50days.

  • PDF

Summer Precipitation Variability in the Han River Basin within the Context of Global Temperature Gradients (전지구 온도지표를 이용한 한강유역의 여름철 강우특성 변화 분석)

  • Jeong, Min-Su;Kim, Jong-Suk;Moon, Young-Il;Hwang, Sung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1151-1159
    • /
    • 2014
  • In this study, two global simple indices are used to investigate climate variability and change in observations. Land-Ocean Contrast (LOC) is an index of area-averaged surface temperature contrast between land and ocean. Meridional Temperature Gradient (MTG) is defined as the mean meridional temperature gradient in the Northern Hemisphere from mid to high latitude and sub-tropical zonal bands. These indices have direct or indirect effects on changing in atmospheric circulations and atmospheric moisture transport from north-south or east-west into East Asia (EA). In addition, warm season hydrometeorology in EA is highly associated with water supplies for coupled human and natural systems including drinking water, irrigation, hydropower generation as well as fisheries. Therefore, in this study, we developed an empirical separation approach for summer rainfall from typhoon and monsoon. An exploratory analysis was also conducted to identify the regional patterns of summer monsoon precipitation over the Korean peninsula within the context of changes in different types of temperature gradients. The results show significant and consistent changes in summer monsoon rainfall during the summer season (June-September) in South Korea.

Projection of future hydrometeorological change scenarios over Republic of Korea using a dynamical downscaling technique (역학적 상세화 기법을 활용한 우리나라 미래 수문기상변화 시나리오 전망)

  • Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.258-262
    • /
    • 2010
  • 지역기후모델 RegCM3 이용하여 역학적 상세화 이중둥지격자체계를 구축하고 관측, ECHO-G/S의 20C3M 및 SRES A2 시나리오를 이용하여 동아시아(60km 분해능)와 한반도(20km 분해능)에 대한 현재 및 미래 (1971-2100, 130년)의 기후변화 시나리오 자료를 생산하여 구축하였다. 현재 1971-2000년 기간 동안 상세화된 기온은 관측에 대해 저온 편의와 여름 강수는 건조 편의가 나타나는 계통오차가 있으나, 상세화된 자료는 한반도의 지형적 특성이 잘 반영되었고 관측의 월별, 계절별 변동성을 유사하게 모의하는 등 재분석 자료를 성공적으로 상세화한 것으로 판단된다. 미래 100년(2001-2100년)에 대해 전반기(2021-2050) 및 후반기(2070-2099)의 시나리오기후변동을 분석한 결과, 상세화된 지역별, 계절별, 연도별 기온 상승의 시 공간적 분포를 잘 보여주며, 기온상승(전반기: 동아시아지역~$1.8^{\circ}C$, 남한~$1.6^{\circ}C$, 후반기: 동아시아지역~$4.7^{\circ}C$, 남한~$4.6^{\circ}C$)에 의한 대기 중 수증기 함유량 증가와 여름 몬순의 강화로 전계절에 대해 강수량(전반기: 동아시아~10.5%, 남한~6.7%, 후반기: 동아시아~20.1%, 남한~31.9%)이 증가할 것으로 전망되었다. 수문기상 변화를 살펴보면, 미래 후반기에 남한은 $4.6^{\circ}C$가 상승하여 적설깊이는 5.3mm(-92.3%)가 감소할 것이고, 강수량의 연변동성을 크나 전체적으로 증가할 것이며, 토양수분, 증발산 또한 강수량 증가와 연관되어 증가할 것으로 전망되었다. 이렇게 ECHO-G/S SRES A2 시나리오를 기반으로 하여 역학적으로 상세화된 시나리오는 통계적으로 상세화된 시나리오 결과와 비교 검증함으로써 다중모델기법에 의해 불확실성을 제시함으로써 수문기상변화 예측을 위한 신뢰성 있는 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Projection of future extreme precipitation events over Republic of Korea using a dynamical downscaling technique: Analysis on change of daily maximum precipitation (역학적 상세화 기법을 활용한 우리나라 극한 강수사상 전망: 일최대강수량 변화 분석)

  • Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1580-1584
    • /
    • 2010
  • 지역기후모델 RegCM3 이용하여 역학적 상세화 이중둥지격자체계를 구축하고 관측, ECHO-G/S의 20C3M 및 SRES A2 시나리오를 이용하여 동아시아(60km 분해능)와 한반도(20km 분해능)에 대한 현재 및 미래(1971-2100, 130년)의 기후변화 시나리오 자료를 생산하였다. 미래 동아시아와 한반도지역은 기온상승에 의해 대기 중 수증기 함유량 증가와 여름 몬순의 강화로 전 계절에 걸쳐 강수량이 증가하고 토양수분, 증발산도 증가할 것으로 전망되었다. 상세화된 일(daily)강수량 자료를 일반극치(general extreme value, GEV)분석을 활용하여 20세기 동안 한반도의 일최대강수량의 공간 분포를 분석하고 미래 강수의 일최대강수량 변화를 전망하였다. 20세기 (1971-2000)에는 남해안과 경기 내륙지방에서 일최대강수량의 빈도와 평균값이 나타났다. 21세기에는 일최대강수량의 평균은 현재보다 약 10 $mmday^{-1}$, 20년 빈도 강수량은 60 $mmday^{-1}$ 정도 증가할 것이고, 남해안과 서해안과 충청내륙일부지방, $39^{\circ}N$ 이북에서 뚜렷이 나타날 것으로 전망되었다.

  • PDF

Dominant Modes of the East Asian Summer Monsoon Using Equivalent Potential Temperature (상당온위를 사용한 동아시아 여름철 몬순의 6월 및 7월 주 변동 모드 분석)

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.483-488
    • /
    • 2012
  • The monsoon front lies on East Asian region, but it gradually propagates to the north during the boreal summer. The equivalent potential temperature (EPT) reveals the thermodynamical features of air masses and monsoon front. Therefore, this study considered the thermodynamical EPT and dynamical wind fields to clarify the peculiarity of East Asian summer monsoon (EASM) variations in June and July, respectively. Western North Pacific subtropical high (WNPSH) and Okhotsk sea high (OSH) both play the crucial role to interannual variations of EASM frontal activity and amount of rainfall. The OSH is important in June, but the WNPSH is key factor in July. Furthermore, the OSH (June) is affected by North Atlantic tripolar sea surface temperature (SST) pattern and WNPSH (July) is influenced by North Indian Ocean SST warming.

Synoptic Analysis on the Trend of Northward Movement of Tropical Cyclone with Maximum Intensity (최대 강도 태풍의 북상 경향에 대한 종관분석)

  • Choi, Ki-Seon;Park, Ki-Jun;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.171-180
    • /
    • 2015
  • Regarding the tropical cyclone (TC) genesis frequency, TCs between 1999 and 2013 were generated more frequently in the northwest waters of the tropical- and subtropical western North Pacific than TCs between 1977 and 1998. TCs over the period from 1977-1998 showed a northward track trend generated mostly from the distant sea in east of the Philippines via the mainland of the Philippines and the South China Sea to the west toward Indochina or from the distant sea in east of the Philippines to the distance sea in east of Japan. TCS over the period from 1999-2013 showed a northward shift pattern to the mid-latitude region mostly in East Asia. Therefore, TCs over the period from 1999-2013 tended to move to much higher latitudes than TCs over the period from 1977-1998, which also resulted in the high possibility of maximum TC intensity occurred in higher latitudes during the former period than the latter period. In the difference of 500 hPa streamline between two periods, the anomalous anticyclonic circulations were strengthened in $30-50^{\circ}N$ whereas the anomalous monsoon trough was placed in north of the South China Sea, which was extended to the east up to $145^{\circ}E$. The mid-latitude in East Asia is affected by the anomalous southeasterlies due to the above anomalous anticyclonic circulations and anomalous monsoon trough. The anomalous southeasterlies play a role in anomalous steering flows that directed TCs to the mid-latitude regions in East Asia, which made the latitudes of the maximum intensities in TCs over the period from 1999 - 2013 further to the north than those in TCs over the period from 1977-1998.

Classification of Intraseasonal Oscillation in Precipitation using Self-Organizing Map for the East Asian Summer Monsoon (동아시아 여름몬순 지수의 자기조직화지도(SOM)에 의한 강수량의 계절 내 진동 분류)

  • Chu, Jung-Eun;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • The nonlinear characteristics of summer monsoon intraseasonal oscillation (ISO) in precipitation, which is manifested as fluctuations in convection and circulation, is one of the major difficulty on the prediction of East Asian summer monsoon (EASM). The present study aims to identify the spatial distribution and time evolution of nonlinear phases of monsoon ISO. In order to classify the different phases of monsoon ISO, Self-Organizing Map(SOM) known as a nonlinear pattern recognition technique is used. SOM has a great attractiveness detecting self-similarity among data elements by grouping and clustering such self-similar components. The four important patterns are demonstrated as Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. It is found that SOM well captured the formation of East Asian monsoon trough during early summer and its northward migration together with enhanced convection over subtropical western Pacific and regionally intensive precipitation including Meiyu, Changma and Baiu. The classification of fundamental large scale spatial pattern and evolutionary history of nonlinear phases of monsoon ISO provides the source of predictability for extended-range forecast of summer precipitation.

Impact of Boundary Conditions and Cumulus Parameterization Schemes on Regional Climate Simulation over South-Korea in the CORDEX-East Asia Domain Using the RegCM4 Model (CORDEX 동아시아 영역에서 경계조건 및 적운모수화방안이 RegCM4를 이용한 남한 지역 기후모의에 미치는 영향 분석)

  • Oh, Seok-Geun;Suh, Myoung-Seok;Myoung, Ji-Su;Cha, Dong-Hyun
    • Journal of the Korean earth science society
    • /
    • v.32 no.4
    • /
    • pp.373-387
    • /
    • 2011
  • In this study, four types of sensitivity experiments (EG, EE, NG, NE; E: ERA-Interim, N: NCEP/DOE2, G: Grell scheme, E: Emanuel scheme) were performed to evaluate the simulation skills of RegCM4 released in July 2010 over the CORDEX (COordinated Regional Downscaling EXperiment) East Asia domain based on the combinations of boundary conditions (BC: ERA-Interim, NCEP/DOE2) and the cumulus parameterization schemes (CPS: Grell, Emanuel) for the 1989. The surface air temperature and precipitation data observed by the Korea Meteorological Adminstration were used to validate the simulation results over South Korea. The RegCM4 well simulates the seasonal and spatial variations of temperature but it fails to capture the seasonal and spatial variations of precipitation without consideration of the BC and CPS. Especially the simulated summer precipitation amount is significantly less in EG, NG, and NE experiments. But the seasonal variation of precipitation including summer precipitation is relatively well simulated in the EE experiment. The EE experiment shows a better skill in the seasonal march of East Asia summer monsoon, distribution of precipitation intensity and frequency than other experiments. In general, the skills of RegCM4 for temperature and precipitation are better during winter than summer, and in Emanuel than Grell schemes. The simulation results are more impacted by cumulus parameterization schemes than boundary conditions.

Long-term Trend Analysis of Cold Waters along the Eastern Coast of South Korea (동해 냉수대 발생역의 장기 변동 분석)

  • Kim, Ju-Yeon;Han, In-Seong;Ahn, Ji-Suk;Park, Myung-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.581-588
    • /
    • 2019
  • A long-term trend analysis of cold water masses along eastern coast of South Korea was performed during summer, based on wind speed, wind direction, and sea surface temperature (SST) data. Wind data collected over a 22-year period (1997-2011) were compared with another set of data collected over the successive 7-year (2012-2018), highlighting a general decrease in the frequency and speed of south winds. However, both the frequency and speed of these winds have been higher in June between 2012-2018, rather than between 1997-2011. The cold water season between July and August was faster during the 7-year period; moreover, the SSTs registered around Gangneung (EN) rose by $0.5^{\circ}C- 1.8^{\circ}C$, while those around Yeongdeok (EC) and Gijang (ES) increased by only $0.1^{\circ}C-0.3^{\circ}C$. The number of cold water days during the 7-year period, compared to those recorded during previous years (1990-2011, satellite SST data by NOAA/AVHRR), decreased in the proximity of Yeongdeok and Gijang, but increased in the proximity of Kangneung. Additionally, the number of cold water days around Kangneung, Yeongdeok, and Gijang increased in June highlighting a geographical and temporal change in the occurrence of cold waters. These observation can be explained by variations in the pressure distribution that should have weakened the East Asian monsoon, affecting the direction and speed of winds that regulate the flow of cold waters.