• Title/Summary/Keyword: 동시적 위치 추정 및 지도작성

Search Result 12, Processing Time 0.017 seconds

Obstacle Detection and Safe Landing Site Selection for Delivery Drones at Delivery Destinations without Prior Information (사전 정보가 없는 배송지에서 장애물 탐지 및 배송 드론의 안전 착륙 지점 선정 기법)

  • Min Chol Seo;Sang Ik Han
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.20-26
    • /
    • 2024
  • The delivery using drones has been attracting attention because it can innovatively reduce the delivery time from the time of order to completion of delivery compared to the current delivery system, and there have been pilot projects conducted for safe drone delivery. However, the current drone delivery system has the disadvantage of limiting the operational efficiency offered by fully autonomous delivery drones in that drones mainly deliver goods to pre-set landing sites or delivery bases, and the final delivery is still made by humans. In this paper, to overcome these limitations, we propose obstacle detection and landing site selection algorithm based on a vision sensor that enables safe drone landing at the delivery location of the product orderer, and experimentally prove the possibility of station-to-door delivery. The proposed algorithm forms a 3D map of point cloud based on simultaneous localization and mapping (SLAM) technology and presents a grid segmentation technique, allowing drones to stably find a landing site even in places without prior information. We aims to verify the performance of the proposed algorithm through streaming data received from the drone.

Study of Deep Learning Based Specific Person Following Mobility Control for Logistics Transportation (물류 이송을 위한 딥러닝 기반 특정 사람 추종 모빌리티 제어 연구)

  • Yeong Jun Yu;SeongHoon Kang;JuHwan Kim;SeongIn No;GiHyeon Lee;Seung Yong Lee;Chul-hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In recent years, robots have been utilized in various industries to reduce workload and enhance work efficiency. The following mobility offers users convenience by autonomously tracking specific locations and targets without the need for additional equipment such as forklifts or carts. In this paper, deep learning techniques were employed to recognize individuals and assign each of them a unique identifier to enable the recognition of a specific person even among multiple individuals. To achieve this, the distance and angle between the robot and the targeted individual are transmitted to respective controllers. Furthermore, this study explored the control methodology for mobility that tracks a specific person, utilizing Simultaneous Localization and Mapping (SLAM) and Proportional-Integral-Derivative (PID) control techniques. In the PID control method, a genetic algorithm is employed to extract the optimal gain value, subsequently evaluating PID performance through simulation. The SLAM method involves generating a map by synchronizing data from a 2D LiDAR and a depth camera using Real-Time Appearance-Based Mapping (RTAB-MAP). Experiments are conducted to compare and analyze the performance of the two control methods, visualizing the paths of both the human and the following mobility.