• Title/Summary/Keyword: 동시역산

Search Result 67, Processing Time 0.027 seconds

Characteristics of Static Shift in 3-D MT Inversion (3차원 MT 역산에서 정적효과의 특성 고찰)

  • Lee Tae Jong;Uchida Toshihiro;Sasaki Yutaka;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.199-206
    • /
    • 2003
  • Characteristics of the static shift are discussed by comparing the three-dimensional MT inversion with/without static shift parameterization. The galvanic distortion by small-scale shallow feature often leads severe distortion in inverted resistivity structures. The new inversion algorithm is applied to four numerical data sets contaminated by different amount of static shift. In real field data interpretations, we generally do not have any a-priori information about how much the data contains the static shift. In this study, we developed an algorithm for finding both Lagrangian multiplier for smoothness and the trade-off parameter for static shift, simultaneously in 3-D MT inversion. Applications of this inversion routine for the numerical data sets showed quite reasonable estimation of static shift parameters without any a-priori information. The inversion scheme is successfully applied to all the four data sets, even when the static shift does not obey the Gaussian distribution. Allowing the static shift parameters have non-zero degree of freedom to the inversion, we could get more accurate block resistivities as well as static shifts in the data. When inversion does not consider the static shift as inversion parameters (conventional MT inversion), the block resistivities on the surface are modified considerably to match possible static shift. The inhomogeneous blocks on the surface can generate the static shift at low frequencies. By those mechanisms, the conventional 3-D MT inversion can reconstruct the resistivity structures to some extent in the deeper parts even when moderate static shifts are in the data. As frequency increased, however, the galvanic distortion is not frequency independent any more, and thus the conventional inversion failed to fit the apparent resistivity and phase, especially when strong static shift is added. Even in such case, however, reasonable estimation of block resistivity as well as static shift parameters were obtained by 3-D MT inversion with static shift parameterization.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Improved full-waveform inversion of normalised seismic wavefield data (정규화된 탄성파 파동장 자료의 향상된 전파형 역산)

  • Kim, Hee-Joon;Matsuoka, Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.86-92
    • /
    • 2006
  • The full-waveform inversion algorithm using normalised seismic wavefields can avoid potential inversion errors due to source estimation required in conventional full-waveform inversion methods. In this paper, we have modified the inversion scheme to install a weighted smoothness constraint for better resolution, and to implement a staged approach using normalised wavefields in order of increasing frequency instead of inverting all frequency components simultaneously. The newly developed scheme is verified by using a simple two-dimensional fault model. One of the most significant improvements is based on introducing weights in model parameters, which can be derived from integrated sensitivities. The model-parameter weighting matrix is effective in selectively relaxing the smoothness constraint and in reducing artefacts in the reconstructed image. Simultaneous multiple-frequency inversion can almost be replicated by multiple single-frequency inversions. In particular, consecutively ordered single-frequency inversion, in which lower frequencies are used first, is useful for computation efficiency.

Joint Inversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (II) - Verification and Application of Joint Inversion Analysis - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(II) - 동시역산해석기법의 검증 및 적용 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.155-165
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. Numerical analysis, theoretical model test, and field test were performed to verify the joint inversion analysis. Results from 2D, 3D finite element analysis were compared with those from the transfer matrix method in the numerical analysis. On the other hand, the difference of results from each inversion analysis was investigated in the theoretical model analysis. Finally, practical applicability of the joint inversion analysis was verified by performing field test. As a result, it is confirmed that considering dispersion information of each wave simultaneously prevents excessive divergence and improves accuracy.

Joint Diversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (I) - Constitution of Joint Diversion Analysis Technique - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(I) - 동시역산해석기법의 구성 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.145-154
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. This analysis consists of the forward modeling using transfer matrix, the sensitivity matrix for evaluating the ground system and DLSS (Damped Least Square Solution) as an inversion technique. The technique of joint inversion uses the dispersion characteristics of Love wave and Rayleigh wave simultaneously making the sensitivity matrix. The sensitivity matrix was used for inversion analysis repeatedly to find the approximate ground stiffness profile. The purpose of the joint inversion analysis is to improve accuracy and convergency of inversion results by utilizing that frequency contribution of each wave is different.

The Crustal and Upper Mantle Velocity Structure of the Southern Korean Peninsula from Receiver Functions and Surface-Wave Dispersion (수신함수와 표면파 분산의 동시역산을 이용한 한반도 남부지역의 지각과 상부맨틀 연구)

  • Yoo, H.J.;Lee, K.;Herrmann, R.B.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.61-70
    • /
    • 2006
  • 3-D S-wave velocity model in the southern Korean Peninsula is investigated by using the joint inversion of receiver functions and surface-wave dispersion. A peninsula average Rayleigh-wave phase velocity in the 10-150 seconds range and tomographic estimates of the Rayleigh and Love wave group velocities in the 0.5-20 seconds period range determined using a $12.5{\times}12.5\;km$ grid for the southern part of the peninsula are used for the inversion. Receiver functions were determined from broadband (STS-2), short-period (SS-1) and acceleration (Episensor) channels of 95 stations. The dense distribution of the stations in the Peninsula permits us to examine the 3-D crustal structure in detail. The inversion result shows the variation and characteristics of S-wave velocity in the crust and upper mantle of the southern Korean Peninsula very well.

  • PDF

Petrophysical Joint Inversion of Seismic and Electromagnetic Data (탄성파 탐사자료와 전자탐사자료를 이용한 저류층 물성 동시복합역산)

  • Yu, Jeongmin;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Seismic inversion is a high-resolution tool to delineate the subsurface structures which may contain oil or gas. On the other hand, marine controlled-source electromagnetic (mCSEM) inversion can be a direct tool to indicate hydrocarbon. Thus, the joint inversion using both EM and seismic data together not only reduces the uncertainties but also takes advantage of both data simultaneously. In this paper, we have developed a simultaneous joint inversion approach for the direct estimation of reservoir petrophysical parameters, by linking electromagnetic and seismic data through rock physics model. A cross-gradient constraint is used to enhance the resolution of the inversion image and the maximum likelihood principle is applied to the relative weighting factor which controls the balance between two disparate data. By applying the developed algorithm to the synthetic model simulating the simplified gas field, we could confirm that the high-resolution images of petrophysical parameters can be obtained. However, from the other test using the synthetic model simulating an anticline reservoir, we noticed that the joint inversion produced different images depending on the model constraint used. Therefore, we modified the algorithm which has different model weighting matrix depending on the type of model parameters. Smoothness constraint and Marquardt-Levenberg constraint were applied to the water-saturation and porosity, respectively. When the improved algorithm is applied to the anticline model again, reliable porosity and water-saturation of reservoir were obtained. The inversion results indicate that the developed joint inversion algorithm can be contributed to the calculation of the accurate oil and gas reserves directly.

Crustal Structure of the Korean Peninsula By Travel Time Inversion of Local Earthquakes

  • Song, Seok-Gu;Lee, Gi-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.21-33
    • /
    • 2001
  • Simultaneous inversion of first-arrivals of local earthquakes recorded by the Korea Meteorological Administration(KMA) seismograph network from 1991 to 1998 is made to derive 1D crustal velocity structure of the Korean peninsula. Twenty-nine events with 178 observations are used in the inversion. Average crustal P-wave velocity turns out to be about 6.3 km/sec, and crustal thickness and upper mantle P-wave velocity are estimated as 33 km and 7.9 km/sec, respectively. Results of inversion indicate the possibility of the low velocity layer in the lower crust. Joint inversion is applied to estimate hypocenters, station delays, and velocities simultaneously. Relative station corrections for 11 stations range from zero to about 1.2 sec. Analysis of the synthetic data shows that estimates of hypocenter locations and station corrections as well as averaged crustal structure are reliable for the given data set..

  • PDF

Strategy for Improving the Resolution of Electrical-resistivity Inversions for Detecting Soft Ground at Shallow Depths (~ 10 m) (천부(약 10 m) 연약 지반 탐지를 위한 전기비저항 역산 해상도 향상 전략)

  • Jang, Hangilro;Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.367-377
    • /
    • 2018
  • This study introduces a DC resistivity inversion method that incorporates structural and inequality constraints to enhance the resolution of resistivity inversions, and presents sample inversion results with these constraints. In the constrained inversions, a base model is constructed from a layered model through interpretation of other geophysical data. Inversion tests establish that both the structural and inequality constraints produce better resistivity models than the unconstrained inversion. However, the inequality inversion not only reproduces the exact layered structure of the background, it reproduces conductive anomalies at a depth of ~ 10 m when an inexact base model of electrical resistivity is used.