• Title/Summary/Keyword: 동시시공성

Search Result 227, Processing Time 0.028 seconds

Evaluation of Strength and Chloride Diffusion in Concrete with FA Considering Temperature Effect (FA를 혼입한 콘크리트의 온도 영향을 고려한 강도 및 염화물 확산성 평가)

  • Keun-Hyeok Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.62-69
    • /
    • 2023
  • For the nuclear power concrete plant structures in the UAE, it is necessary to consider the deterioration from high sulfate ions in the atmosphere and high chloride ions from the coast. In this study, two strength grade concrete mixture (40 MPa and 27 MPa) and two curing/diffusion temperatures (20 ℃ and 50 ℃) were considered for evaluating the temperature effects on diffusion and strength due to high average temperature above 38 ℃ a year in UAE. When the initial curing temperature was high, the compressive strength increased in high-temperature curing to 7 days, but the strength slightly increased in the 20 ℃ curing condition at 28 days. Regarding diffusion test, unlike the compressive test results, reduced chloride diffusion coefficients were evaluated both in 40 MPa and 27 MPa grade at 28 days. In the case of 91 days of curing, an increase in diffusivity due to high temperature and a decrease in diffusivity due to age effect occur simultaneously. Compared to the results of the curing and diffusion tests at 20 ℃ and 28 days, when the curing and diffusion tests were conducted at 50 ℃ in 91 days, the diffusion coefficients decreased to 76.2 % in 40 MPa grade and 85.4 % in 37 MPa grade with increasing curing period, respectively.

Case Study of Ancient City Wall Renewal in Gongju, a Historic Cultural City (역사문화도시 공주의 고도담장정비 사례 연구)

  • Ohn, Hyoungkeun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.254-269
    • /
    • 2020
  • The purpose of this study is to propose guidance for wall renewal that is appropriate for an ancient city wall through application of advanced research and theories in wall design. It is a streetscape improvement project which forms part of the "Ancient City Image Finding Project". Study methods consist of advanced research classification, wall design theory contemplation, and analysis of the significance of designated ancient city areas and the "Ancient City Image Finding Project" status. Based on these methods, case study candidates were selected, case status and problems were identified, and improvement proposals were analyzed by comparing various features. Advanced wall research was classified into six categories including analysis of wall characteristics; wall design principle applications; wall structure, color, shape, and application; modern reinterpretation; palace walls; and house, temple, and village walls. The wall is an element of the streetscape improvement component of the "Ancient City Image Finding Project", with the characteristic of providing preceding experience in visual and cognitive awareness than interior structure. Case candidates for ancient city wall improvement are based on the composition distribution of the special conservation district in each ancient city as well as the conservation promotion district. Ultimately, the surrounding village of Gongju-si Geumseong-Dong Songsanri-gil, adjacent to the Royal Tomb of King Muryeong, was selected as the candidate. The "Ancient City Image Finding Project" of the surrounding village of Gongju-si Geumseong-Dong Songsanri-gil began with new Hanok construction. However, wall maintenance did not begin concurrently with that new Hanok construction. Support and maintenance took place afterwards as an exterior maintenance project for roadside structures. If the Hanok and wall were evaluated and constructed at the same time, the wall would have been built in unison with the size and design of the Hanok. The layout of the main building and wall of the Hanok is deemed to be a structure that is closed tightly because of its spatial proximity and tall height. Songsan-ri-gil's wall design should create a calm, subtle, and peaceful atmosphere with shapes, colors, and materials that express ancient city characteristics, but it is in an awkward position due to its sharpness and narrowness. The cause of the problem at Gongju-si Geumseong-dong Songsanri-gil, the case candidate, is that it is lacking significantly in terms of the aesthetic factors that traditional walls should possess. First, aesthetic consciousness seems to have disappeared during the selection and application process of the wall's natural materials. Second, the level of completion in design and harmony is absent. Maintenance guidance after analyzing the cause of problems in ancient city wall maintenance at Gongju-si Geumseong-dong Songsanri-gil, the subject area of research, is as follows: First, the Hanok design and layout of the wall and main gate should be reviewed simultaneously. Second, the one-sided use of natural stone wall in the Hanok wall design should be reexamined. Third, a permanent system to coordinate the opinions of citizens and experts during the planning and design phases should be employed. Fourth and finally, the Hanok's individuality shall be collectivized and its value as a cultural asset representing the identity of the community shall be increased.

Mock-up Test of Temperature Crack Reduction Method Application by Setting Time Control of Mat Foundation Mass Concrete (응결시간조정에 의한 매트기초 매스 콘크리트의 온도균열저감 공법적용의 Mock-up Test)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, the number of high-rise buildings being built in Korea by major construction companies for residential and commercial use has been increasing. When constructing a high-rise building, it is necessary to apply massive amounts of concrete to form a mat foundation that can withstand the huge load of the upper structure. However, it is of increasing concern that due to limitations in terms of the amount of placing equipment, available job-sites and systems for mass concrete placement in the construction field, it is not always possible to place a great quantity of concrete simultaneously in a large-scale mat foundation, and for this reason consistency between placement lift cannot be secured. In addition, a mat foundation Is likely to crack due to the stress caused by differences inhydration heat generation time. To derive a solution for these problems, this study provides test results of a hydration heat crack reduction method by applying placement lift change and setting time control with a super retarding agent for mass concrete in a large-scale mat foundation. Mock-up specimens with different mixtures and placement liftswere prepared at the job-site of a newly-constructed high-rise building. The test results show that slump flow of concrete before and after adding the super retarding agent somewhat Increases as the target retarding time gets longer, while the air content shows no great difference. The setting time was observed to be retarded as the target retarding time gets longer. As the target retarding time gets longer, compressive strength appears to be decreased at an early stage, but as time goes by, compressive strength gets higher, and the compressive strength at 28 days becomes equal or higher to that of plain concrete without a super retarding agent. For the effect of placement lift change and super retarding agent on the reduction of hydration heat, the application of 2 and 4 placement lifts and a super retarding agent makes it possible to secure consistency and reduce temperature difference between placement lifts, while also extending the time to reach peak temperature. This implies that the possibility of thermal crack induced by hydration heat is reduced. The best results are shown in the case of applying 4 placement lifts.

A preliminary numerical analysis on the behaviour of tunnel under construction in fracture zone considering seismic load (지진 하중을 고려한 단층파쇄대에서의 시공 중 터널 거동 분석에 관한 수치해석적 연구)

  • Oh, Dong-Wook;Hong, Soon-Kyo;Kim, Dae-Kon;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.279-299
    • /
    • 2019
  • Recently occurred earthquake Gyeongju and Pohang served as a momentum to remind that Korean peninsular is not a safety zone from earthquake anymore. The importance of seismic design, therefore, have been realized and researches regarding design response spectrum have been actively carried out by many researchers and engineers. Current tunnel seismic design method is conducted to check safety of tunnel structure by dynamic numerical analysis with condition of completed lining installation, so, it is impossible to consider safety of tunnel behavior under construction. In this study, therefore, dynamic numerical analysis considering seismic wave propagations has been performed after back analysis using results from field monitoring of tunnel under construction in fractured zone and 1st reinforcement (shotcrete, rockbolt) behaviour are analyzed. Waves are classified by period characteristic (short and long). As a result, the difference depending on period characteristic is minor, and increasements of displacement are obtained at crown displacement due to seismic wave is 28~31%, 14~16% at left side of tunnel in the fractured zone, 13~27% at right side of tunnel in the bed rock, respectively. In case of shotcrete axial force is increased 113~115% at tunnel crown, 102% at left side, 106~110% at right side, respectively. Displacement and axial force of rockbolts which are selected by type of anchored grounds (only fractured zone, fractured zone and bed rock, only bedrock) are analyzed, as a result, rockbolt which is anchored to fractured zone and bed rock at the same time are weaker than any other case.

A Study on the Shear Strengthening Characteristic of Reinforced Concrete T-shaped Beams (철근콘크리트 T형보의 전단 보강 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Moon, Keum Hwan;Yoo, Myeong Hwan;Lee, Chang Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.10-18
    • /
    • 2012
  • Most of studies on existing strengthening methods were mainly on increase of stiffness and strength of shear strengthening to rectangular beam. As concrete of beam and slab is poured simultaneously on the characteristics of construction in reinforced concrete beam-slab structure, adjacent slab uniformed after hardening has T-shaped beam cross section which makes the flange of beam, enhances the stiffness of the beam and widens the area supporting compressive strength, but available data of flexural behavior of T-shaped beam are lacking. In this research the T-shaped beams would be made, then the reinforced effects and structural properties can be estimated according to the kinds of reinforced materials and reinforced position. The conclusions are shown as below. To sum up the experimental results, The specimen which was reinforce by CB embedded inside of concrete indicated excellent resistive behavior, internal force and stiffness when it was destroyed. The steel plate reinforced specimen of stiffness and internal force were increase but it expressed lower reinforce effects because of lowering anchored force between concrete. Fiber sheet strengthening showed superior effects but the interfacial delamination was found due to the lack of anchored force in destruction. So the measure is needed now.

Construction of Sea-Floor Topographic Survey System Based on Echosounder and GNSS (Echosounder와 GNSS 기반 해저지형측량시스템의 구축)

  • Jin-Duk LEE;Yong-Jin CHOI;Jae-Bin LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.56-68
    • /
    • 2023
  • A system that extracts seabed topographic information by simultaneously and continuously observing the horizontal position and water depth in the sea by combining a single beam echosounder and GNSS was constructed. By applying the developed system to actual measurements of small-scale sea areas, the effectiveness of bathymetry and sea-floor topographic data acquisition using GNSS and echosounder was examined. By using the developed outdoor program DS-NAV and indoor program DS-CAD and applying the tide level data at the time of actual measurement of the target sea area, it was possible to derive bathymetry results based on the datum level i.e. approximate lowest low water level(A.L.L.W). By using the developed outdoor program DS-NAV and indoor program DS-CAD and applying the tide level data at the time of actual measurement of the target sea area, it was possible to derive the results of bathymetric survey based on the datum level. From database built through the actual measurement. it was possible to create 3D model of the sea-floor topography and extract cross-sections. The results of this study are expected to be economically useful for extracting seabed topographical information from small sea areas or in dredging sites for offshore construction.

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.

The Impact of Virtual Reality on the Extensibility of Exhibition Space and the Usefulness of Outreach Program in the Museum (가상현실(VR)을 통한 박물관 전시공간의 확장 가능성과 아웃리치 프로그램에서의 효용성)

  • Kim, Hyun-a
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.5
    • /
    • pp.83-92
    • /
    • 2017
  • Because the exhibition space in the virtual reality is another kind of reality, which exits in another level, it enables us free from time and physical space, so using the virtual reality will be an effective practice for overcoming cultural divide and managing museums. Especially, virtual reality could transform a fixed physical space into portable contents, so this characteristic would be useful and meaningful when applying the outreach program, which claimed to stand for 'museum out of museum' as following. First, it will give more opportunities of experiencing museums to many people because of freedom of physical space, one of the advantages virtual reality has. Second, people will experience and understand the contents under the context, rather than simply exposing information of artifacts one by one. Third, even people who are far from a museum can experience identical contents at the same time, so this synchronicity will enhance communications among people and the society. Fourth, it will provide rich contents to people by putting a variety of exhibitions into one VR device. Fifth, it will be useful for archiving the exhibition with minimizing the loss of contents. Sixth, VR will convert museum visitors from observers to operators. Finally, VR can expand the target audience of the outreach program and develop a variety of education programs. Because museums is a public organization for overcoming cultural divide and enhancing communication, they should adopt virtual reality, which enables to extend the exhibition space and provide more opportunities of experiencing museums.

Strength Evaluation of Pinus rigida Miller Wooden Retaining Wall Using Steel Bar (Steel Bar를 이용한 리기다소나무 목재옹벽의 내력 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.318-325
    • /
    • 2011
  • Pitch pine (Pinus rigida Miller) retaining walls using Steel bar, of which the constructability and strength performance are good at the construction site, were manufactured and their strength properties were evaluated. The wooden retaining wall using Steel bar was piled into four stories stretcher and three stories header, which is 770 mm high, 2,890 mm length and 782 mm width. Retaining wall was made by inserting stretchers into Steel bar after making 18 mm diameter of holes at top and bottom stretcher, and then stacking other stretchers and headers which have a slit of 66 mm depth and 18 mm width. The strength properties of retaining walls were investigated by horizontal loading test, and the deformation of structure by image processing (AlCON 3D OPA-PRO system). Joint (Type-A) made with a single long stretcher and two headers, and joint (Type-B) made with two short stretchers connected with half lap joint and two headers were in the retaining wall using Steel bar. The compressive shear strength of joint was tested. Three replicates were used in each test. In horizontal loading test the strength was 1.6 times stronger in wooden retaining wall using Steel bar than in wooden retaining wall using square timber. The timber and joints were not fractured in the test. When testing compressive shear strength, the maximum load of type-A and Type-B was 130.13 kN and 130.6 kN, respectively. Constructability and strength were better in the wooden retaining wall using Steel bar than in wooden retaining wall using square timber.

Suitability for Subgrade Material of Weathered Granite Soils in the Gansung area of Gangwon-do (강원도 간성지역에 분포하는 화강풍화토의 도로토공 재료특성 연구)

  • Jeoung, Jae-Hyeung;Yu, Jun;Kim, Jin-Man;Kim, Seung-Hyun;Lim, Kwang-Su
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2011
  • Upon encountering weathering soil at a construction site, it may be necessary to change the design and construction plans for geotechnical structures. When weathering soil is exposed to air, the weathering process proceeds rapidly, resulting in significant damage to geotechnical structures, particle defects, and an increase in moisture sensitivity. The management of weathering-soil compaction is challenging. Because the engineering properties of weathering-soils vary regionally, it is important to report the result of research into the regional characteristics of such soils. At two locations of granite gneiss in the Gansung area of Gangwon-do, geological studies were performed at 22 and 8 sites, respectively. At each site, test samples were collected for analysis by XRD and to measure particle size, consistency, and compaction. To evaluate the suitability of the material for road subgrade, we examined the interrelationship between CBR value and the uniformity coefficient, the 200 sieve passing ratio and the aggregate ${\geq}$ 2 mm) content. We found that for the weathered granite soil, aggregate sized > 2 mm has a significant effect on the CBR value. In addition, the mixing of aggregate sized > 2 mm with sub-quality soil improves the soil condition.