• 제목/요약/키워드: 동물모델

Search Result 1,166, Processing Time 0.905 seconds

Behavior Classification Model Based on Graph Generation Using Time Series Structural Feature (시계열 내부 구조 기반 그래프 생성을 통한 행동 분류 모델)

  • Hyuksoon Choi;Jinhwan Yang;Siung Kim;Sungsik Kim;Nammee Moon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.37-40
    • /
    • 2024
  • 본 연구에서는 웨어러블 디바이스로부터 수집된 다변량 반려동물 행동 데이터를 처리하기 위해, GCN(Graph Convolutional Network)과 GRU(Gated Recurrent Unit)를 결합한 모델을 제안한다. 제안된 모델은 시계열 내부 구조를 활용하여 그래프 구조로 변환하고, DTW(Dynamic Time Warping) 유사도 분석을 통해 노드 간의 시간적 유사도를 기반으로 엣지를 생성한다. 실험결과로 DTW 기반 엣지 생성 방식이 유클리드 거리 및 선형 방식에 비해 더 높은 성능을 나타냈다. 본 연구는 반려동물의 행동을 정확히 분류하기 위한 효과적인 방법론을 제공한다.

Corrosive Stricture Model Induced-Esophageal Burn : Animal Pilot Data (NaOH 용액을 이용한 부식성 식도 협착 동물모델 형성에 관한 연구)

  • Kim, Min-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.643-647
    • /
    • 2021
  • The purpose of this study was to access the possibility and ideal model for corrosive-induced tissue hyperplasia in the rat esophagus. Twenty rat were divided into two group: a healthy group, corrosive group. corrosive burn in esophagus were produced using 30% NaOH on the distal esophagus. After surgical procedure, behavioral and weight changes were monitored on a weekly. At 3 weeks after surgical procedure, fluoroscopic esophagogram was performed and then all rats sacrificed for histological analysis by administering inhalable pure carbon dioxide. Technical surgery for corrosive stricture were 100%. A total of 2 rats died in corrosive group from a corrosive burn related to dysphagia within 14 days. The esophageal stenosis ratio was significantly higher in the corrosive group than in the healthy group (40.1 ± 9.2 % and 1.4 ± 7.2%, respectively; p = 0.001). The tissue hyperplasia ratio was also significantly higher in the Corrosive group (62.5 ± 9% and 22.08 ± 6%, respectively; p = 0.001). Infusion of 30% NaOH may suggest alternative option to evaluation tool for preclinical study in a rat corrosive model.

A Study on Biomass Estimation Technique of Invertebrate Grazers Using Multi-object Tracking Model Based on Deep Learning (딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구)

  • Bak, Suho;Kim, Heung-Min;Lee, Heeone;Han, Jeong-Ik;Kim, Tak-Young;Lim, Jae-Young;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • In this study, we propose a method to estimate the biomass of invertebrate grazers from the videos with underwater drones by using a multi-object tracking model based on deep learning. In order to detect invertebrate grazers by classes, we used YOLOv5 (You Only Look Once version 5). For biomass estimation we used DeepSORT (Deep Simple Online and real-time tracking). The performance of each model was evaluated on a workstation with a GPU accelerator. YOLOv5 averaged 0.9 or more mean Average Precision (mAP), and we confirmed it shows about 59 fps at 4 k resolution when using YOLOv5s model and DeepSORT algorithm. Applying the proposed method in the field, there was a tendency to be overestimated by about 28%, but it was confirmed that the level of error was low compared to the biomass estimation using object detection model only. A follow-up study is needed to improve the accuracy for the cases where frame images go out of focus continuously or underwater drones turn rapidly. However,should these issues be improved, it can be utilized in the production of decision support data in the field of invertebrate grazers control and monitoring in the future.

Effect of CIMT on the Functional Improvement and BDNF Expression in Hemiplegic Rats Whose Somatomotor Area was Removed (체성운동영역이 제거된 편마비 흰쥐에서 억제 유도치료가 기능향상과 BDNF 발현에 미치는 효과)

  • Lim, Chang-Hun;Hwang, Bo-Gak
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.194-203
    • /
    • 2008
  • CIMT(Constraint Induced Movement Therapy) is to improve the function and use of damaged upper limbs by not only confinement of unaffected limbs' exercise but also inducement of affected limbs' one. The purpose of the study is to verify the effect of CIMT by means of motor behaviour test and immunohistochemistry, using animal models. This study was analyzed using 40 male Sprague-Dawley rats as the experimental groups and 40 ones as the control groups. The rats were divided into two random groups : one group as an experimental group which was operated on under anesthesia and removed somatomotor regions with CIMT and the other as the control group without CIMT.Postural Reflex Test, Beam Walking Test, Limb Placement Test and Immunohistochemistry were run on the day 1, 3 , 7 and day 14 following surgery to each 10 rat. As a result, this study demonstrates that CIMT might be an effect method to verify the plasticity of central nervous system as motor behaviour test made all high scores (p<.05) and BDNF was high too in experimental groups.

Establishment of a Murine Model for Radiation-induced Bone Loss in Growing C3H/HeN Mice (성장기 마우스에서 방사선 유도 골소실 동물모델 확립)

  • Jang, Jong-Sik;Moon, Changjong;Kim, Jong-Choon;Bae, Chun-Sik;Kang, Seong-Soo;Jung, Uhee;Jo, Sung-Kee;Kim, Sung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2015
  • Bone changes are common sequela of irradiation in growing animal. The purpose of this study was to establish an experimental model of radiation-induced bone loss in growing mice using micro-computed tomography (${\mu}CT$). The extent of changes following 2 Gy gamma irradiation ($2Gy{\cdot}min^{-1}$) was studied at 4, 8 or 12 weeks after exposure. Mice that received 0.5, 1.0, 2.0 or 4.0 Gy of gamma-rays were examined 8 weeks after irradiation. Tibiae were analyzed using ${\mu}CT$. Serum alkaline phosphatase (ALP) and biomechanical properties were measured and the osteoclast surface was examined. A significant loss of trabecular bone in tibiae was evident 8 weeks after exposure. Measurements performed after irradiation showed a dose-related decrease in trabecular bone volume fraction (BV/TV) and bone mineral density (BMD), respectively. The best-fitting dose-response curves were linear-quadratic. Taking the controls into accounts, the lines of best fit were as follows: BV/TV (%) = $0.9584D^2-6.0168D+20.377$ ($r^2$ = 0.946, D = dose in Gy) and BMD ($mg{\cdot}cm^{-3}$) = $8.8115D^2-56.197D+194.41$ ($r^2$ = 0.999, D = dose in Gy). Body weight did not differ among the groups. No dose-dependent differences were apparent among the groups with regard to mechanical and anatomical properties of tibia, serum ALP and osteoclast activity. The findings provide the basis required for better understanding of the results that will be obtained in any further studies of radiation-induced bone responses.