• Title/Summary/Keyword: 동마찰

Search Result 194, Processing Time 0.03 seconds

Improvement of Heat of Reaction of Jet Fuel Using Pore Structure Controlled Zeolite Catalyst (제올라이트계 촉매의 기공구조 조절을 통한 항공유의 흡열량 향상 연구)

  • Hyeon, Dong Hun;Kim, Joongyeon;Chun, Byung-Hee;Kim, Sung Hyun;Jeong, Byung-Hun;Han, Jeong Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.95-100
    • /
    • 2014
  • In hypersonic aircraft, increase of aerodynamic heat and engine heat leads heat loads in airframe. It could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which are able to absorb the heat load by undergoing endothermic reactions. In this study, exo-tetrahydrodicyclopentadiene was selected as a model endothermic fuel and experiments on endothermic properties were investigated with pore structure controlled zeolite catalyst using metal deposition. We secured the catalyst that had better endothermic performance than commercial catalyst. The object of this study is inspect catalyst properties which have effect on heat absorption improvement. Synthetic catalyst could be applied to system that use exo-THDCP as endothermic fuel instead of other commercial catalyst.

Some Dynamical Issues about the Tsushima Warm Current based on Bibliographical Review (서지학적으로 본 대마난류의 몇 가지 역학적 쟁점들)

  • SEUNG, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.439-447
    • /
    • 2019
  • Some dynamical issues about the Tsushima Warm Current (TWC) are reviewed and checked for the remaining unresolved problems, focusing on the formation of the TWC, seasonal variation of its volume transport and its branching in the East Sea. The TWC is a part of the North Pacific (NP) subtropical gyre driven by the NP global wind system. However, the quantitative amount of volume transport is sensitive to friction, basin geometry, barrier effect and so on. Among many causes suggested by many scientists, subpolar winds are found to be most closely related with the seasonal variation of TWC volume transport. However, more studies relating the latter not only to the subpolar winds but also to those including the subtropical winds seem to be required. The branching of the TWC has been known to be due to the western intensification for the East Korean Warm Current (EKWC) and to the bottom trapping for the Nearshore Branch. Since the former hypothesis is problematic in explaining the seasonal variation of the EKWC, other candidate mechanisms may need to be considered.

The Effects of Geometrical Imperfections on the Dynamic Characteristics of a Tapered Roller Bearing Cage (테이퍼 롤러 베어링 케이지의 불완전성이 통특성에 미치는 영향)

  • Ahn, Tae-Kil;Park, Jang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.464-469
    • /
    • 2019
  • Tapered roller bearings are used widely in vans, trucks, and trains because they can support the vehicle in a stable manner even under a heavy load. The cage of a tapered roller bearing maintains the gap between the rollers, which prevents friction wear and suppresses heating. If the cage is severely deformed due to resonance, the roller may not be able to roll smoothly and even leave the cage. Consequently, it is very important to analyze the dynamic characteristics of the cage for reliable performance of a bearing. The cage essentially has geometrical tolerance in the manufacturing process. In this paper, the effects of those geometrical imperfections on the dynamic characteristics of the cage were investigated. As a result, natural frequency separation occurred near the natural frequency of the ideal cage due to geometrical imperfections. In addition, the interval was proportional to the magnitude of the geometric error, and the interval increased with increasing mode number.

Integral Sliding-based Dynamic Control Method using Genetic Algorithm on an Omnidirectional Mobile Robot (전방향 모바일 로봇에서 유전알고리즘을 이용한 적분 슬라이딩 기반 동적 제어 기법)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1817-1825
    • /
    • 2021
  • Omnidirectional mobile robots can be mobile in any direction without changing the robot's direction, making them easy to apply in many applications and providing excellent maneuverability. Omnidirectional mobile robots have non-linear dynamic components such as friction, making them difficult to model accurately. In this paper, we linearize the mobile robot system using the mobile robot's inverse dynamics and integral sliding mode control method to remove these nonlinear components. And the position and velocity gains are optimized using a genetic algorithm to realize the optimal performance of the proposed system control method. As a result of the performance evaluation, the genetic algorithm's control method showed superior performance than the control method with an arbitrary gain. And the proposed inverse dynamic and integral sliding mode control method can be applied to other control methods. It can be beneficial for designing a linear control system.

Study on the Physical Properties of Artificial Soil for Tillage Experiments (경운실험(耕耘實驗)을 위(爲)한 인공토양(人工土壤)의 물리적(物理的) 특성(特性)에 관(關)한 연구(硏究))

  • Kim, Kee-Dae;Hur, Yun-Kun;Kim, Man-Soo;Kim, Soung-Rai
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1978
  • For improvement and new design of tillage equipments, indoor test is very useful and more desirable than outdoor because the experiment of outdoor is very difficult and its cost is expensive. This study was carried out to determine the physical properties of artificial soil suitable for the indoor test with the soil bin manufactured at the workshop of the Dept. of Agricultural Machinery Engineering. The artificial soil being studied was made with very similarity to the natural soil of the experimental plots of Chungnam National University, and it consist of 39.35 percent, by weight of bentonite and 48.10 percent of sand with 12.55 percent of SAE 10W oil. The results are summarized as follows: 1. Bulk density increased with increasing number of rolling, and its relationship could be expressed. $y=1.073200+0.070780x-0.002263x^2$ where, y=bulk density ($g/cm^3$), x=number of rolling. These results could be explained that the effect of rolling velocity on the bulk density was not singnificant in the range of 4.5~10.4 em/sec. 2. The absolute soil hardness depended directly upon number of rolling, and their relationship could be expressed by the equation. $y=37.74(0.64 +0.17x-0.0054x^2)/(3.36-0.17x-0.0054x^2)^3$. where, y=absolute soil hardness($kg/cm^3$), x=number of rolling. 3. Relationship between the bulk density and absolute soil hardness could be expressed by the equation; $y=37.74(2.46x-2.02)/(6.02-2.46x)^3$. where, y=absolute soil hardness, x=bulk density. 4. The cohesion and the angle of internal friction of artificial soil were increased with increasing its bulk density. According to the cohesion and angle of internal friction, at the range of 1.60~1.75 ($g/cm^3$) of bulk density, this artificial soil was similar with sandy loam of 29.5% moisture content of natural soil. 5. Sliding-fricfion coefficient of steel plate on the artificial soil was 0.3~0.4 and rubber plate on it is 0.64~0.72. Those values were very similar with those of natural soil being studies by many others.

  • PDF

Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking, (타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.51-64
    • /
    • 1996
  • After the model open-ended pile attached with strain gages was driven into a pressure chamber, in which the saturated microfine sand was contained, the static compression loading test was performed for that pile. Based on the test results, ultimate pile capacity was determined. Then, either simulated earthquake shaking or sinusoidal shaking was applied to the pile with the sustained certain level OP ultimate pile load. Then, pile capacity degradations characteristics during shaking were studied. Pile capacity degradation during two different shakings were greatly different. During the simulated earthquake shaking, capacity degradation depended upon the magnitude of applied load. When the load applied to the pile top was less than 70% of ultimate pile capacidy, pile capacity degradation rate was less than 8%, and pile with the sustained ultimate pile load had the degradation rate of 90%. Also, most of pile capacity degradation was reduced in outer skin friction and degradation rate was about 80% of ultimate pile capacity reduction. During sinusoidal shaking, pile capacity degradation did not depend on the magnitude of applied load. It depended on the amplitude and the frequency , the larger the amplitude and the fewer the frequency was, the higher the degradation rate was. Reduction pattern of unit soil plugging (once depended on the mode of shaking. Unit soil plugging force by the simulated earthquake shaking was reduced in the bottom 3.0 D, of the toe irrespective of the applied load, while reduction of unit soil plugging force by sinusoidal shaking was occurred in the bottom 1.0-3.0D, of the toe. Also, the soil plugging force was reduced more than that during simulated earthquake shaking and degradation rate of the pile capacity depended on the magnitude of the applied load.

  • PDF

The Marine Tourism Co-Development of the South-North Korea and Policy Support Devices (남북한 공동 해양관광개발의 방향과 정책지원 방안)

  • Sin, Dong-Ju
    • Korean Business Review
    • /
    • v.23 no.1
    • /
    • pp.87-106
    • /
    • 2010
  • North Korea is hoping get more international aids and cooperations with facing serious difficulties in the domestic economies, but it is expected to be hard to induce foreign direct investments due to the lots of existing negative factors in the credibility, profitability, bad images, and so on. On the other hand, in South Korea, the demands of the places and facilities for the leisure & tourism have been skyrocketed with the fast economic growth during the last three decades, especially in marine tourism As the Korea peninsula is surrounded with sea in three sides, North and South Korea must utilize these area qualitatively and quantitatively for advance of entire cooperation. The cooperation through sea has some restraint factors. They may occur unexpected conflict and need enormous infrastructure investment for the further cooperation. In the other side, it has some advantages such as, it can avoid direct contact between both people for North government. Even though inter-Korean relationship is facing temporary cooling time recently, The marine tourism co-development of the South-North Korea is a potential and important factor for enhancement of the reconciliation and cooperation. Furthermore, it can achieve unification of two Koreas. This study reviews many factors and suggests marine policy Support devices for The marine tourism co-development between South-North Korea.

  • PDF

Design by improvement of main parts of garlic planter (7조식 직립마늘파종기 배종율 개선 설계 및 제작)

  • Lee, Choong Ho;Ha, Jong Woo;Jang, Ji Un;Lee, In Beom;Kim, Hyun Gyung
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.86-86
    • /
    • 2017
  • 마늘파종기는 파종기구동부와 파종후 파종홀의 복토역할을 하는 파종기롤러, 지면과의 마찰을 통해 바퀴의 회전토크가 발생하며 발생된 토크는 파종기 내부 동력으로 전달되어 전체 파종시스템(배종, 호퍼캠, 파종부)을 동작 시키는 기능을 수행하는 파종바퀴, 마늘종구를 한알씩 집어올려 중간이송컵으로 이송하는 자세교정컵이 포함된 배종부와 자세교정컵에서 낙하된 마늘종구를 땅속으로 파종하는 파종장치로 구성된다. 배종율 95%, 2립 배종률 5% 성능을 확보할 수 있는 기술이 개발될 경우 세계적으로도 독보적인 기술 우위를 확보할 수 있다. 이와 같은 기본적인 기능을 구현할 수 있는 컨셉모델에 대한 설계를 수행하여 시제품개발 전 기구해석과 구조해석 등을 위한 기본설계를 수행하였다. 배종율 95% 이상을 확보하기 위해서는 기존의 현장경험의 의한 설계 방식으로는 한계가 있기 때문에 시뮬레이션 및 분석 개발이 필요한데, 프레임은 고정밀 마늘종구 배종부 장착을 위한 기본 구조물로써 작동시 동력을 얻기 위한 바퀴와 연계가 되도록 설계되었으며, 호퍼는 배종 수행을 위해 마늘을 저장해 두는 통으로써 배종부와 연결된다. 배종부의 배종판이 회전함에 따라서 배종판의 홈이 호퍼 내로 들어갔다 나오면서 마늘을 집게되며, 동력 전달부는 배종판을 회전시켜주고, 회전 속도 조절을 가능하게 한다. 파종부는 배종부에서 중간컵을 통해 하나씩 공급해준 마늘을 땅에 심는 부분으로서. 프레임의 바퀴 회전과 연동되어 회전하고 설계하였다. 배종판에서 중간컵으로 이송된 마늘을 파종부의 파종컵에 받아 회전하면서 땅속에 파종컵이 묻히면 파종컵이 열리면서 땅속에 마늘을 심는 원리이다. 조간조정은 7조식의 경우 초기설치시 고정되도록 설계되었으며 농촌진흥청 기계화 표준재배안에 따라 의성마늘 기준 $14{\times}14cm$(조간${\times}$주간)를 기준으로 개발하였다. 조간조정은 기계가 설치되면 조정하기 어려우므로 14cm로 설계하였으며, 주간조정은 원형배종장치의 구동기어부의 속도비로 간격을 조정할 수 있도록 기어장치를 설계하였다. 주간조정은 13에서 18cm의 범위에서 작동하도록 설계되었으며, 필요에 따라 간격조절이 가능함. 마늘은 그 크기가 다르고, 형상도 다르기 때문에 종자에 따른 개별적인 파종기술들이 개발되어야하기 때문에 개발 기간이 오래 걸리고, 수익에 비하여 개발비가 과다하게 요구되는 실정인데 축적된 시뮬레이션 툴을 이용한 파종기 분석 기술을 확보할 경우 다른 파종기의 연구 개발에도 크게 도움이 될 것으로 기대되며, 생육측정 실험과 동역학 해석 툴 RecurDyn을 통해 파종기의 기구학적 분석을 통한 설계반영 인자를 도출할 계획이다.

  • PDF

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling (정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석)

  • Shin, Eung-Soo;Kim, Hyun-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.

Application of non-destructive method for evaluation of soil nail length (쏘일네일의 길이평가를 위한 비파괴 기법의 적용)

  • Kim, Ki-Hong;Kim, Nag-Young;Lee, Jong-Sub;Yu, Jung-Doung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.75-90
    • /
    • 2015
  • As soil nails support a ground by the friction between nails and soils being reinforced, the length of soil nails is important factor for a ground stability. Thus, the soil nail length has to be accurately evaluated in order to secure a ground stability. The goal of this study is to suggest the applicability of the non-destructive method as the basic research for the evaluation of the soil nail length. First, the elastic and electromagnetic waves are adopted to select an applicable method for the soil nails connected by the coupler. Test results show that while the ultrasonic waves are not detected due to the coupler, the electromagnetic waves are free for the influence of the coupler. Second, electromagnetic waves are measured for combined soil nails with the length of 1 m~15 m for the investigation of the characteristics of electromagnetic waves. The travel time of the electromagnetic wave increases with an increase in the soil nail length. In addition, the ground cable is used to apply the electromagnetic waves to pre-installed soil nails. Test results show that the travel time of the electromagnetic wave by using the ground cable increases with an increase in soil nail length. This study demonstrates that the electromagnetic wave may be a promising method for the evaluation of the soil nail length.