• Title/Summary/Keyword: 동력 전달

Search Result 468, Processing Time 0.029 seconds

Kinematic Optimization and Experiment on Power Train for Flapping Wing Micro Air Vehicle (날갯짓 초소형 비행체의 끈을 이용한 동력 전달 장치에 대한 기구학적 최적화 및 실험)

  • Gong, Du-Hyun;Shin, Sang-Joon;Kim, Sang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.289-296
    • /
    • 2017
  • In this paper, geometrical optimization for newly designed flapping mechanism for insect-like micro air vehicle is presented. The mechanism uses strings to convert rotation of motor to reciprocating wing motion to reduce the total weight and inertial force. The governing algorithm of movement of the mechanism is established considering the characteristic of string that only tensile force can be acted by string, to optimize the kinematics. Modified pattern search method which is complemented to avoid converging into local optimum is adopted to the geometrical optimization of the mechanism. Then, prototype of the optimized geometry is produced and experimented to check the feasibility of the mechanism and the optimization method. The results from optimization and experiment shows good agreement in flapping amplitude and other wing kinematics. Further research will be conducted on dynamic analysis of the mechanism and detailed specification of the prototype.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.

Analysis of power requirement of the underground crop harvester attached on agricultural tractor during traction operation (트랙터 부착형 땅속작물 수확기의 견인 작업시 소요동력 분석)

  • Jang, Jeong-Hoon;Kim, Wan-Soo;Choi, Chang-Hyeon;Park, Seong-Un;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.150-155
    • /
    • 2018
  • In Korea, the mechanization ratio of field farming is about 58.3%. Especially, mechanization ratio of harvest operation is 10% or less. So, it is required to improve the mechanization ratio of harvest operation to analyze the power requirement analysis of agricultural tractor. The purpose of this study is to analyze power requirement of the underground crop harvester attached on agricultural tractor for traction operation. First, a power measurement system was developed and installed in 45 kW agricultural tractor. Second, field experiments were conducted at two driving speed levels (1.41, 2.17 km/h), and axle torque and rotation speed were analyzed. At 1.41km/h driving speed, the average power requirement of driving axle is 3.13 kW, respectively, at 2.17km/h driving speed, the average power requirement of driving axle is each 4.20 kW. In addition, the field tests show that as the driving speed increases by 53%, the power requirement of the underground crop harvester attached on agricultural tractor increases by 34%. Therefore, it indicated that the power requirement of agricultural tractor was affected by the driving speed.

Study on the Heat and Mass Transfer Characteristics of Oyster Shell Flowing through the Bundle of Heating Pipes (가열원관군 주위를 유동하는 굴패각의 탈착과정에 대한 열 및 물질전달에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.28-34
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the fluidized bed with bundle of heating pipe. The test material is oyster shell from fishery wastes which can use without costs. The main parameters of experiment are inlet air temperature, velocity of inlet air and heat flux of heating pipes. Also the geometry of heating pipe is treated as important parameter. From this study, the effect of inlet air temperature and input heat flux have much affect to increase the heat and mass transfer. On the other hand, the effect of inlet air velocity has less affect to increase the heat and mass transfer. And it is clarified that the oyster shell has sufficient probability for using as a desiccant in air-conditioning system.

Free Vibration Analysis of Double Cylindrical Shells Using Transfer of Influence Coefficent (영향계수의 전달에 의한 2중 원통형 셸의 자유진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.48-54
    • /
    • 2017
  • The transfer influence coefficient method which is an vibration analysis algorithm based on the transfer of influence coefficient is applied to the free vibration analysis of double cylindrical shells. After the computational programs for the free vibration analysis of double cylindrical shells were made using the transfer influence coefficient method and the transfer matrix method, we compared the results using the transfer influence coefficient method with those by the transfer matrix method. The transfer influence coefficient method provided the good computational results in the free vibration analysis of double cylindrical shells. In particular, The results of the transfer influence coefficient method are superior to those of the transfer matrix method when the stiffness of internal springs connecting a inside cylindrical shell and a outside cylindrical shell is very large.

Free Vibration Analysis of Curved Beams Regarded as Discrete System Using Finite Element-Transfer Stiffness Coefficient Method (유한요소-전달강성계수법에 의한 이산계 곡선보의 자유진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • A curved beam is one of the basic and important structural elements in structural design. In this paper, the authors formulated the computational algorithm for analyzing the free vibration of curved beams using the finite element-transfer stiffness coefficient method. The concept of the finite element-transfer stiffness coefficient method is the combination of the modeling technique of the finite element method and the transfer technique of the transfer stiffness coefficient method. And, we confirm the effectiveness the finite element-transfer stiffness coefficient method from the free vibration analysis of two numerical models which are a semicircle beam and a quarter circle beam.

A Study on the Stiffness of Frustum-shaped Coil Spring (원추형 코일스프링의 강성에 대한 연구)

  • Lee, S.J.;Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.49-54
    • /
    • 2003
  • 스프링은 가장 널리 이용되어지고 있는 기계요소이다. 본 논문에서는 원추형 코일스프링의 강성을 구하기 위하여, 빔요소를 이용한 유한요소법을 사용하였다. 가상일의 법칙을 이용하였고, 코일스프링의 하중벡터를 압축 분포하중으로 대체하였다. 하중의 증가에 의한 절점에서의 변위는 유한요소법를 이용하여 계산하였다. 단계법으로 결점의 변위를 중첩하여 전체 강성행렬을 구하였다. 유한요소법에 의한 해석치는 실험치와 잘 일치하였다. 본 논문에서 제시한 프로그램을 사용하여, 스프링 강성과 응력을 예측할 수 있을 것으로 사료된다.

  • PDF

A study on the belt-pulley system of continuously variable transmission (무단변속기(CVT) 벨트-풀리 시스템에 관한 고찰)

  • 이충섭;조희복
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.8-16
    • /
    • 1996
  • 차량의 주행저항에 대응하여 최소-최대변속비 사이를 연속적으로 무한대의 단계로 변속시킴으로써 우수한 동력성능과 연비를 얻을 수 있다는 장점을 지닌 무단변속기의 벨트-풀리 시스템에 대하여, 현재 개발에 성공한 벨트-풀리 시스템의 특징을 분석하고, 벨트 효율 및 적용한계를 조사분석한 결과, 내구성 및 소음측면에서 볼 때 금속푸시벨트가 가장 유리하며, 벨트의 동력손실을 최소화하기 위하여 금속푸시벨트의 구성부품인 블록과 링을 최적화하고, 풀리에 작용하는 축력을 최적으로 제어함으로서 전달효율이 향상된 벨트-풀리 시스템을 제공할 수 있다. 날로 엄격해지는 배기가스 규제와 전자 및 제어분야의 발달로 성능이 더욱 향상된 무단변속기의 개발 및 장착이 환산될 것으로 예상되며, 또한 효율, 소음측면 뿐만 아니라, 제작단가가 저렴한 CVT용 벨트의 개발이 잇따를 것으로 전망된다.

  • PDF

A Study on the Development of Shaft Power Measuring System using Phase difference (위상차를 이용한 축계 마력 측정 시스템의 개발에 관한 연구)

  • Nam, Taek-Geun;Lee, Don-Chul;No, Yeong-O;Heo, Gwang-Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.448-452
    • /
    • 2007
  • 본 논문은 선박의 축계마력 측정방법 및 측정시스템의 개발방법에 대해 논의한다. 엔진 축계에서의 정확한 출력은 선박의 사용목적, 관련추진축계의 제작 및 설치비용 등과 밀접한 관련을 맺고 있다. 본 연구에서는 동력 전달측과 부하측사이의 축상에 두 개의 기어휠을 설치하고 각각의 기어휠에 비접촉식 검출기를 부착하여 위상을 계측한다. 동력이 가해질 경우 두 지점에서는 비틀림 각에 의한 위상차가 발생하게 되고, 발생된 위상차를 전압신호로 검출하여 축에서의 마력을 계산하게 된다.

  • PDF