• Title/Summary/Keyword: 동력해석

Search Result 945, Processing Time 0.025 seconds

Development of fundamental technology for dynamic analysis of the high speed EMU (Electric Multiple Unit) (동력분산형 고속철도 주행성능 동역학 해석을 위한 기반기술 개발)

  • Yoon, Ji-Won;Park, Tae-Won;Jun, Kab-Jin;Park, Sung-Moon;Kim, Jung-Bum
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.380-386
    • /
    • 2008
  • The development of a new railway vehicle is under progress through the Next Generation High-Speed Rail Development Project in Korea. Its aim is to develope fundamental technology of the vehicle that can run over 400km/h. The new distributed traction bogie system, 'HEMU'(High-speed Electric Multiple Unit), will be used and is different from that of previously developed high speed railway vehicles. Previous vehicles adopted push-pull type system, which means one traction-car drives rest all of the vehicle. Due to the difference, investigation on dynamic behavior and its safety evaluation are necessary, as a part of verification of the design specification. In the paper, current progresses of researches are presented. And the High-Speed Railway vehicle system is evaluated for a dynamic characteristic simulation. Proper dynamic models including air-suspension system, wheel-rail, bogie and car-body is developed according to the vehicle simulation scenario. The basic platform for the development of dynamic solver is prepared using nodal, modal coordinate system and wheel-rail contact module. Operating scenario is prepared using commercial dynamic analysis program and used for development of dynamic model, which contains many parts such as carbodies, bogies and suspension systems. Furthermore, international safety standard is applied for final verification of the system. Finally, the reliability of the dynamic model will be verified with test results in the further researches. This research will propose a better solution when test results shows a problem in the parts and elements. Finally, the vehicle that has excellent performance will be developed, promoting academic achievement and technical development.

  • PDF

Design Optimization of QTP-UAV Prop-Rotor Blade Using ModelCenter (ModelCenter를 이용한 QTP-UAV 프롭로터 블레이드 형상 최적설계)

  • Kang, Hee Jung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • Blade design optimization of QTP-UAV prop-rotor was conducted using ModelCenter(R). Performance efficiency of the blade in hover and forward flight were adopted as the multi-objective function. Required power and pitch link force applied to constraint in each flight mode and limited lower than the value of the baseline blade. Design variables of root chord length of the blade, taper ratio, twist slope, twist angle at 0.5R of the blade, anhedral angle, parabolic coefficient of a tip shape and location of airfoil were used to generate the blade planform. CAMRAD-II, the comprehensive analysis program of rotorcraft, was used for performance analysis of prop-rotor blade in design process. Performance of the optimized blade improved 1.6% of figure of merit in hover and 13.6% of propulsive efficiency in forward flight. Pitch link force also reduced approximately 30% less than that of the baseline blade.

Preliminary Conceptual Design of a Multicopter Type eVTOL using Reverse Engineering Techniques for Urban Air Mobility (도심항공 모빌리티(UAM)를 위한 역설계 기법을 사용한 멀티콥터형 eVTOL의 기본 개념설계)

  • Choi, Won-Seok;Yi, Dong-Kyu;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.29-39
    • /
    • 2021
  • As a means of solving traffic congestion in the downtown of large city, the interest in urban air mobility (UAM) using electric vertical take-off landing personal aerial vehicle (eVTOL PAV) is increasing. eVTOL configurations that will be used for UAM are classified by lift-and-cruise, tilt rotors, tilt-wings, tilted-ducted fans, multicopters, depending on propulsion types. This study tries to perform preliminary conceptual design for a given mission profile using reverse engineering techniques by taking the multicopter type Airbus's CityAirbus as a basic model. Wetted area, lift to drag ratio, drag coefficients were calculated using the OpenVSP which is an aerodynamic analysis software. The power required for each mission section of CityAirbus were calculated, and the corresponding battery and motor were selected. Also, total weight was predicted by estimating component weights of eVTOL.

Conceptual design and sensitivity analysis of a tilt + stopped rotor type eVTOL using motor weight estimation formula and iterative design (모터중량 추정식과 반복 설계를 통한 틸트+정지로터형 eVTOL 개념설계 및 민감도 분석)

  • Ju-heon Lee;Taejong Kim;Seo-yoon Jang;Hui-su Jo;Ho-Yon Hwang
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.77-95
    • /
    • 2023
  • In this study, the conceptual design of a tilt + stopped rotor type electric vertical take-off and landing (eVTOL) aircraft was performed using design iteration. Based on Hyundai Motor's S-A1, the mission profile was defined using the concept of urban air mobility (UAM), and configuration design and aerodynamic analysis were performed using OpenVSP and XFLR5 software. After estimating the required power for the designed eVTOL, the required performance of the battery and the maximum take-off weight (MTOW) were calculated. . It was iteratively calculated using Microsoft Excel and Visual Basic Application, and a new electric motor weight estimation formula was derived. Also, the sensitivity analyses of each design variables of an eVTOL was performed using the automated program.

Heat Treatment Deformation Analysis of Bearing Considering Phase Transformation (상변태를 고려한 베어링의 열처리 변형 해석)

  • S.P. Lee;S.J. Lee;T.B. Kim;K.T. Cho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.351-358
    • /
    • 2023
  • Bearings are mechanical components that support loads and transmit rotation. The inner and outer rings come into contact with the rotating mechanism, requiring a very high level of hardness. To meet this requirement, heat treatment is commonly performed. The heat treatment process inherently involves thermal deformation. Particularly in the case of large bearings, significant deformation relative to the bearing's shape can occur, making accurate deformation prediction during heat treatment essential. However, predicting deformation in heat treatment is challenging due to the simultaneous consideration of phase transformation, heat transfer, and bearing deformation. In this study, an analysis of heat treatment-induced deformation in bearings was conducted, taking phase transformation into account. The thermal and mechanical properties were calculated based on the chemical composition of the bearing material. This information was then used to perform a deformation-heat transfer-phase transformation analysis. To validate the reliability of the analysis, experiments were conducted under the same conditions. When comparing the analysis and experimental results, differences in deformation were observed. These differences were attributed to variations in phase transformation conditions between the analysis and experiments. Consequently, it is anticipated that supplementing these results will enable the prediction of deformation while considering phase transformation conditions in bearings.

Development of an Automated Gangform Climbing System for Apartment Housing Construction - Structural Stability and Tower Crane Lifting Load Analysis - (공동주택 전용 갱폼 인양 자동화 기술의 개발 - 구조적 안정성 및 타워크레인 양중부하 분석 -)

  • Lee, Jeong-Ho;Yang, Sang-Hoon;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.48-59
    • /
    • 2012
  • Gangform, compared to the traditional forms, is a systemized form which can reduce construction duration and cost by the advantage of using it repeatedly. However, transportation and climbing process of the Gangform is highly dependant on the performance of tower crane. Gangform climbing process takes one day out of six to seven days of a structural work cycle. Tower cranes can not be used in other lifting works when they lift the Gangform during the structural work cycle, causing the delay in the construction project. Numerous efforts and researches have been done in domestic and international industry to solve such limitations of Gangform climbing process. Especially, "A Study on the Development of Automatic Gangform Climbing System for Apartment Housing Construction"has suggested a conceptual model which can climb the Gangform system without a tower crane. In this paper, the technical and economical feasibilities of previously proposed Automatic Gangform climbing system are examined by evaluating its structural stability and lifting load reduction effect.

A Mathematical Model of Return Flow outside the Surf Zone (쇄파대(碎波帶) 밖에서 return flow의 수학적(數學的) 모형(模型))

  • Lee, Jong Sup;Park, II Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.355-365
    • /
    • 1994
  • An analytical model of return flow is presented outside the surf zone. The governing equation is derived from the Navier-Stokes equation and the continuity. Each term of the governing equation is evaluated by the ordering analysis. Then the infinitesimal terms, i.e. the turbulent normal stress, the squared vertical velocity of water particle and the streaming velocity, are neglected. The driving forces of return flow are calculated using the linear wave theory for the shallow water approximation. Especially, the space derivative of local wave heights is described considering a shoaling coefficient. The vertical distribution of eddy viscosity is discussed to the customary types which are the constant, the linear function and the exponential function. Each coefficient of the eddy viscosities which sensitively affect the precision of solutions is uniquely decided from the additional boundary condition which the velocity becomes zero at the wave trough level. Also the boundary conditions at the bottom and the continuity relation are used in the integration of the governing equation. The theoretical solutions of present model are compared with the various experimental results. The solutions show a good agreement with the experimental results in the case of constant or exponential function type eddy viscosity.

  • PDF

Performance Analysis of a 3 Pressured Combined Cycle Power Plant (3압 복합 발전 플랜트 사이클에 대한 성능해석)

  • Kim, S. Y.;K. S. Oh;Park, B. C.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.74-82
    • /
    • 1998
  • Combined cycle power plant is a system where a gas turbine or a steam turbine is used to produce shaft power to drive a generator for producing electrical power and the steam from the HRSG is expanded in a steam turbine for additional shaft power. The temperature of the exhaust gases from a gas turbine ranges from $400{\sim}650^{\circ}C$, and can be used effectively in a heat recovery steam generator to produce steam. Combined cycle can be classed as a topping and bottoming cycle. The first cycle, to which most of the heat is supplied, is a Brayton gas turbine cycle. The wasted heat it produces is then utilized in a second process which operates at a lower temperature level is a steam turbine cycle. The combined gas and steam turbine power plant have been widely accepted because, first, each separate system has already proven themselves in power plants as an independent cycle, therefore, the development costs are low. Secondly, using the air as a working medium, the operation is relatively non- problematic and inexpensive and can be used in gas turbines at an elevated temperature level over $1000^{\circ}C$. The steam process uses water, which is likewise inexpensive and widely available, but better suited for the medium and low temperature ranges. It therefore, is quite reasonable to use the steam process for the bottoming cycle. Recently gas turbine attained inlet temperature that make it possible to design a highly efficient combined cycle. In the present study, performance analysis of a 3 pressured combined cycle power plant is carried out to investigate the influence of topping cycle to combined cycle performance. Present calculation is compared with acceptance performance test data from SeoInchon combined cycle power plant. Present results is expected to shed some light to design and manufacture 150~200MW class heavy duty gas turbine whose conceptual design is already being undertaken.

  • PDF

Predicting Lift of Rotor Blade for Agricultural Unmanned Helicopter using CFD Simulation (CFD 시뮬레이션을 이용한 농용 회전익기의 로터블레이드 양력성능 예측)

  • Koo, Young Mo;Won, Yong Sik;Hong, Jong Geun;Ali, H.B.;Sohn, Chang Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.59-59
    • /
    • 2017
  • 무인 헬리콥터의 양력을 개선하기 위한 익형 설계 단계로서 두꺼운 익형(V1505A)과 얇고 처진 익형(V2008B)의 기본 두 익형의 특성을 예측하는데 있어 회전하는 블레이드의 현실적 조건을 반영한 3D 모델을 마련하고 성능을 예측하였다. Fluent를 이용한 400 mm 선형모델의 시뮬레이션에서는 V1505A 익형은 높은 받음각에서 안정적인 특성을 보인 반면 V2008B는 비교적 높은 동력효율 특성을 보였으나, 높은 받음각에서는 실속 이후 양력이 급락하는 특성을 나타낸다. 형성된 노드 수는 약 870,000개로 하였다. 시위길이 135 mm인 익형 V2008B의 형상은 ANSYS (Fluent v16.2)를 이용해 반경(길이) 1,502 (1,380) mm 의 로터 블레이드를 구성하였다. 충분하지 않은 유동장이 익형 표면에서의 유동의 영향에 영향을 주지 않도록 직경 20 m의 원방경계(far field)를 형성하였다. 사용된 매쉬의 형태는 정사면체 형태로 로터 표면으로부터의 첫 번째 두께 높이는 0.001 m이고 10개의 층으로 형성하였다. 정지 비행하는 헬리콥터의 상태를 가정하여 회전좌표계를 이용하여 정상상태의 유동을 해석하고 사용된 난류모델은 넓은 영역에서의 유동을 고려하여 Realizable $k-{\varepsilon}$ 모델을 사용하였다. 내측그립 받음각 $6{\sim}22^{\circ}$에 대하여 현실적인 회전속도를 연동하여 600~1000 rpm을 적용하였다. 반복수(iteration)는 2000으로 하여 잔차값(residual)이 충분히 수렴하도록 하였다. 전체적으로 실제 헬리콥터가 발휘하는 양력보다는 낮은 수치로 예측되었으며 모델 및 해석 조건에 대한 검토가 필요해 보인다. 양력 값은 받음각 $10^{\circ}$에서 자중(약 68 kgf)을 극복하였고 받음각 $12^{\circ}$에 유상하중 20 kgf을 발휘하며 888 N의 양력을 보였다, 이어 받음각 $22^{\circ}$에서 실속 현상이 발생하였다. 받음각이 증가함에 따라 항력 역시 증가하였으며 받음각 $12^{\circ}$에서 121 N이었고 실속에 이르며 항력은 갑자기 증가할 것으로 예측된다. 본 연구는 변이 익형 개발의 선행 단계로 기본 익형에 대한 공력특성을 CFD 시뮬레이션을 통하여 예측하였다. 예측 값은 현실적 실험방법을 통하여 검증이 되어야 하며 이후 변이익형에 대한 예측과 설계가 가능하다.

  • PDF

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF