• Title/Summary/Keyword: 동력해석

Search Result 945, Processing Time 0.024 seconds

Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect (동축 반전 전기동력 수직이착륙기의 지면 효과에 대한 전산해석)

  • Yang, Jin-Yong;Lee, Hyeok-Jin;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.599-608
    • /
    • 2022
  • Urban air mobility (UAM) equipped with rotor system is subject to ground effect at vertiport during takeoff and landing. The aerodynamic performance of the aircraft in ground effect should be analyzed for the safe operation. In this study, The ground effects on the aerodynamic performance and wake structure of the quadcopter electric vertical takeoff and landing (eVTOL) configuration equipped with coaxial counter-rotating propellers were investigated by using the lattice Boltzmann method (LBM). The influence of the ground effect was observed differently in the upper and lower propellers of the coaxial counter-rotating propeller system. There was no significant change in the aerodynamic performance of the upper propeller even if the propeller height above the ground was changed, whereas the averaged thrust and torque of the lower propeller increased significantly as propeller height decreased. In addition, the amplitude of the thrust fluctuation tended to increase as the propeller height decreased. The propeller wake was not sufficiently propagated downstream and was diffused along the ground due to the outwash flow developed by the ground effect. The impingement of the rotor wakes on the ground and a fountain vortex structure were observed.

Method for Increasing Stability by Reducing the Motion of a Lightweight Floating Body (경량 부유체의 운동 저감으로 안정성 증가방법에 관한 연구)

  • Seon-Tae Kim;Jea-Yong Ko;Yu-mi Han
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.407-416
    • /
    • 2023
  • Demand for leisure facilities such as mooring facilities for berthing leisure vessels and floating pensions based on floating bodies is increasing owing to the rapid growth of the population and related industries for marine leisure activities. Owing to its relatively light weight as a fluid, inclination is easily generated by waves and surcharges flowing to the coast, resulting in frequent safety accidents because of the low stability. As a solution to this problem, a motion reduction device for floating bodies is proposed in this study. The device (motion reduction device based on the air pressure dif erence) was attached to a floating body and the effect was analyzed by comparing the results with those of a floating body without motion reduction. The effect analysis was further analyzed using a computer analysis test, and the method for increasing the stability of the floating body was studied, and its the effect was verified. Based on the analysis of the test results, the stability of the floating body increased with a motion damping device is higher than that of the floating body without a motion reducing device as the wave momentum reduces, owing to the air pressure difference. Therefore it was concluded that the use of such a device for reducing motion a floating body is useful not only for non-powered ships but also for powered and semi-submersible ships, and further research should be conducted by applying it to various fields.

Analysis of Slope Stability Considering the Saturation Depth Ratio by Rainfall Infiltration in Unsaturated Soil (불포화토 내 강우침투에 따른 포화깊이비를 고려한 사면안정해석)

  • Chae, Byung-Gon;Park, Kyu-Bo;Park, Hyuck-Jin;Choi, Jung-Hae;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.343-351
    • /
    • 2012
  • This study proposes a modified equation to calculate the factor of safety for an infinite slope considering the saturation depth ratio as a new variable calculated from rainfall infiltration into unsaturated soil. For the proposed equation, this study introduces the concepts of the saturation depth ratio and subsurface flow depth. Analysis of the factor of safety for an infinite slope is conducted by the sequential calculation of the effective upslope contributing area, subsurface flow depth, and the saturation depth ratio based on quasi-dynamic wetness index theory. The calculation process makes it possible to understand changes in the factor of safety and the infiltration behavior of individual rainfall events. This study analyzes stability changes in an infinite slope, considering the saturation depth ratio of soil, based on the proposed equation and the results of soil column tests performed by Park et al. (2011 a). The analysis results show that changes in the factor of safety are dependent on the saturation depth ratio, which reflects the rainfall infiltration into unsaturated weathered gneiss soil. Under continuous rainfall with intensities of 20 and 50 mm/h, the time taken for the factor of safety to decrease to less than 1.3 was 2.86-5.38 hours and 1.34-2.92 hours, respectively; in the case of repeated rainfall events, the time taken was between 3.27 and 5.61 hours. The results demonstrate that it is possible to understand changes in the factor of safety for an infinite slope dependent on the saturation depth ratio.

The Separation of Church and State and Religious Policy in Modern Korea (한국의 정교분리와 종교정책)

  • Yoon, Seung Yong
    • The Critical Review of Religion and Culture
    • /
    • no.25
    • /
    • pp.195-241
    • /
    • 2014
  • When the objective of a modern state focuses on securing basic human right of an individual and realizing public good in a state community, the direction of policy on religion of a state can not deviate far away from such objective. Meanwhile, the policy on religion of modern states today mostly takes the church and state separation principle as its basis. The states secure religious freedom and enforce the separation of church and state by differentiating religion and the mundane world and establishing the relation between the two. This study examined the church and state separation principle, which is an important system device of recent age nation-states, and explored the possibility of more active policy on religion. First, the relationship among religion, state and politics was examined from more structural and functional viewpoint. Next, how the separation of church and state principle has become recent age political principle and what was the settlement process of church and state separation in other countries are summarized. At last, the actual situation of church and state separation in Korea, the structural limitation of it and the direction of policy on religion are examined. The application experience of church and state separation principle is quite short in Korean society. In addition, when there is a religious issue, there is the trend of evading the issue unconditionally or responding to it passively. However, the religious culture in Korean society is one of the biggest cultural resources and social assets. Since it has big potential as driving force for the advance of state, it is regretful to leave religion alone as it is. Therefore, this study explored the original limitations of church and state separation principle which are limiting the religious policy of of state and searched for a theoretical basis for the utilization of resources in religious culture as driving force of state by overcoming the limitations. This study examined the situation in Korea by paying attention to how differently the church and state separation principle is being applied in other states, The separation of church and state, which is the basis of policy on religion in Korea, belongs to 'similar separation type' like in Japan; therefore, there is a trend of doctrinaire interpretation or arbitrary interpretation. This study suggests that it is required to overcome this limping state and settle down the church and state separation principle, which fits to Korean society, as a social and cultural practice. It is also suggested that more active policy on religion would be enforced by wider interpretation of church and state separation.

Secondary Flow Patterns of Liquid Ejector with Computational Analysis (액체상 이젝터의 2차측 액체 송출량 특성 전산해석)

  • Kwon, Kwisung;Yun, Jinwon;Sohn, Inseok;Seo, Yongkyo;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.183-190
    • /
    • 2015
  • An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of $35^{\circ}$ was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.

Development of a Model Test System and Analysis Method for Assessing Towing Stability of a Caisson in Wet Towing (케이슨의 예인 안정성 평가를 위한 모형 시험 시스템과 해석 기법의 개발)

  • Kim, Jong-Hyeok;Seo, Jeonghwa;Kim, Han-Gyeol;Kim, Changhee;Yoo, Geuksang;Rhee, Shin Hyung;Park, Chang-wook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • The present study aims to design and utilize a model test system of a Caisson in wet towing condition, to assess towing stability of a 9,300 ton class caisson. The suggested towing system was designed to provide regular tension on the towline, whereas the previous model test system towed the model in constant speed. The new model test system was expected to reproduce the towing condition more realistically than the test system with constant speed condition, as the tugboat in actual towing condition tows the towline with constant power. Model tests were conducted in a towing tank with 1/30 scaled model. In the model tests, six-degrees-of-freedom motion of the caisson model and tension on the towline were measured and analyzed. By using the new system, fluctuation of the motion of model and tension on the towline decreased. The variation in the draft and initial trim was applied in the model tests. In the initial trim condition, the motion and towing force decreased.

Evaluation of Screw Conveyor Model Performance depending on the Inclined Angle by Discrete Element Method (개별요소법을 활용한 경사각에 따른 스크루 컨베이어 모델 성능 평가)

  • Park, Byungkwan;Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.379-393
    • /
    • 2019
  • For the economical construction of a tunnel by TBM, the selection of TBM optimized with the various project conditions is important, and also necessary to predict the performances of selected TBM in advance. This study was conducted to comprehensively evaluate the performance of the EPB shield TBM screw conveyor by the discrete element method. The sticky particles were used for the excavated material models, and screw conveyor with 11 different inclined angles were simulated to evaluate the performance depending on the different inclined angles. The four different rotational speed conditions of the screw were used, and torque, required power, extra energy for muck discharge, and the muck discharge rate were selected as four performance indicators. As a result, the optimized inclined angle was selected, and selected angle accords with the fact that EPB shield TBM screw conveyor is generally installed and adjusted at the inclined angle between 20.0° and 30.0° in the field.

A Numerical Study on the Effect of Pressure Relief Ducts on the Normal Pressure in a Preliminary Design of Honam-Jeju Subsea Tunnel (호남-제주 해저터널 가상설계의 공기압력 제어 덕트가 열차 주행에 미치는 영향에 대한 수치해석 연구)

  • Seo, Sangyeon;Ha, Heesang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.17-27
    • /
    • 2016
  • High-speed trains have been developed widely in European countries and Japan in order to transport large quantity of people and commodities in short time. Additionally, a high speed train is one of the most desirable and environmentally friendly transportation methods. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Due to this aerodynamic pressure against the train, a large amount of traction is required for the operation of a train in a tunnel. Therefore, it is essential to incorporate a pressure relief system in a tunnel in order to reduce aerodynamic resistance caused by a high-speed train. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate positive and negative normal pressures acting on a train. One-dimensional numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Numerical Technique to Analyze the Flow Characteristics of a Propeller Using Immersed Boundary Lattice Boltzmann Method (가상경계 격자볼쯔만법을 이용한 프로펠러의 유동특성해석 방법에 관한 연구)

  • Kim, Hyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.441-448
    • /
    • 2016
  • The thrust force created by a propeller depends on the incoming flow velocity and the rotational velocity of the propeller. The performance of the propeller can be described by dimensionless variables, advanced ratio, thrust coefficient, and power coefficient. This study included the application of the immersed boundary lattice Boltzmann method (IBLBM) with the stereo lithography (STL) file of the rotating object for performance analysis. The immersed boundary method included the addition of the external force term to the LB equation defined by the velocity difference between the lattice points of the propeller and the grid points in the domain. The flow by rotating a 4-blade propeller was simulated with various Reynolds numbers (Re) (including 100, 500 and 1000), with advanced ratios in the range of 0.2~1.4 to verify the suggested method. The typical tendency of the thrust efficiency of the propeller was obtained from the simulation results of different advanced ratios. It was also necessary to keep the maximum mesh size ratio of the propeller surface to a grid size below 3. Additionally, a sufficient length of the downstream region in the domain was maintained to ensure the numerical stability of the higher Re and advanced ratio flow.

A Solute Transport Analysis around Underground Storage Cavern by using Eigenvalue Numerical Technique (고유치 수치기법을 이용한 지하저장공동 주위의 용질이동해석)

  • Chung, Il-Moon;Kim, Ji-Tae;Cho, Won-Cheol;Kim, Nam-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.381-391
    • /
    • 2008
  • The eigenvalue technique is introduced to overcome the problem of truncation errors caused by temporal discretization of numerical analysis. The eigenvalue technique is different from simulation in that only the space is discretized. The spatially discretized equation is diagonized and the linear dynamic system is then decoupled. The time integration can be done independently and continuously for any nodal point at any time. The results of eigenvalue technique are compared with the exact solution and FEM numerical solution. The eigenvalue technique is more efficient than the FEM to the computation time and the computer storage in the same conditions. This technique is applied to the solute transport analysis in nonuniform flow fields around underground storage caverns. This method can be very useful for time consuming simulations. So, a sensitivity analysis is carried out by using this method to analyze the safety of caverns from nearly located contaminant sources. According to the simulations, the reaching time from source to the nearest cavern may takes 50 years with longitudinal dispersivity of 50 m and transversal dispersivity of 5 m, respectively.