• Title/Summary/Keyword: 동계작물

Search Result 139, Processing Time 0.025 seconds

Double Cropping Productivity of Main Whole-Crop Silage Rice and Winter Feed Crops in the Central Plains of Korea (중부 평야지에서 사료용 벼와 주요 동계사료작물 이모작 시 생산성)

  • Ahn, Eok-Keun;Jeong, Eung-Gi;Park, Hyang-Mi;Jung, Kuk-Hyun;Hyun, Ung-Jo;Ku, Ja-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.311-322
    • /
    • 2019
  • In order to establish an optimal double cropping system to obtain the maximum annual quantity, we investigated the annual productivity of whole-crop silage (WCS) rice, Jowoo (Jw), Yeongwoo (Yw), and Mogwoo (Mw), and winter feed crops (WFC), Italian ryegrass (IRG), Greenfarm (GF), rye Gogu (GU), and triticale Joseong (JS), in paddy fields of the central plains of Korea. From 2016 to 2019, each crop was subjected to two standard cultivation methods: WCS rice and WFC optimal. Using the WCS optimal mode, the average dry matter yield (DMY) of WCS rice, early flowering Jw, was 15.8 tons/ha and 21.0 for the mid-late heading Yw; there was no significant difference compared to the 19.2 tons/ha late-flowering Mw (p<0.01). The WFC were not significantly different between GF (3.2 tons/ha) and GU (4.5) sown on September 23rd, while JS was the highest at 12.6 tons/ha (p<0.001). There was a significant difference in the order of JS (16.6 tons/ha) > GF (10.5) > GU (4.7)(p<0.001) sown on October 11th. For JS sown on October 31st, the DMY was 11.8 tons/ha, which was significantly higher than that of the other two crops (p<0.05). Except for rye GU, DMY was the highest when sown on October 11th. For WFC optimal mode, the average DMY of JS was the highest at 18.3 tons/ha, which was significantly different from that of GF (10.9) and GU (9.6) (p<0.001). The DMY of WCS rice transplanted on May 10th was the highest at 23.0 tons/ha in Mw, which was not significantly different from that of Yw (21.4) but significantly different from that of Jw (15.9) (p<0.05). On transplanting on May 25th, the DMY of Mw was the highest at 24.2 tons/ha; this was not significantly different from that of Yw (20.7), but it was significantly different from that of Jw (18.6) (p<0.05). When transplanted on June 11th, the DMY was 21.3 tons/ha in Yw, which was significantly higher than the DMY of other two cultivars, Jw and Mw (p<0.05). For the WCS rice-WFC double cropping, the total annual DMY was 33.6 tons/ha with the combination of the WCS rice, Yw, and the triticale JS for WCS optimal mode. Meanwhile, the total annual DMY was 39.6 tons/ha with the combination of the triticale JS and the WCS rice, Yw, for WFC optimal mode. In conclusion, the strategies for obtaining the maximum yield of high-quality forage for WCS rice-WFC, WFC-WCS rice double cropping are as follows: 1) cultivation centered on the optimal mode of WFC, and 2) sowing the WFC, triticale JS in mid-October, harvesting the crops around the end of May and transplanting the WCS rice, Yw, in early June to obtain the maximum DMY of 39.6 tons/ha.

Development of Biomass Evaluation Model of Winter Crop Using RGB Imagery Based on Unmanned Aerial Vehicle (무인기 기반 RGB 영상을 이용한 동계작물 바이오매스 평가 모델 개발)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.709-720
    • /
    • 2018
  • In order to optimize the evaluation of biomass in crop monitoring, accurate and timely data of the crop-field are required. Evaluating above-ground biomass helps to monitor crop vitality and to predict yield. Unmanned Aerial Vehicle (UAV) imagery are being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study reports on the development of remote sensing techniques for evaluating the biomass of winter crop. Specific objective was to develop statistical models for estimating the dry weight of barley and wheat using a Excess Green index ($E{\times}G$) based Vegetation Fraction (VF) and a Crop Surface Model (CSM) based Plant Height (PH) value. As a result, the multiple linear regression equations consisting of three independent variables (VF, PH, and $VF{\times}PH$) and above-ground dry weight provided good fits with coefficients of determination ($R^2$) ranging from 0.86 to 0.99 with 5 cultivars. In the case of the barley, the coefficient of determination was 0.91 and the root mean squared error of measurement was $102.09g/m^2$. And for the wheat, the coefficient of determination was 0.90 and the root mean squared error of measurement was $110.87g/m^2$. Therefore, it will be possible to evaluate the biomass of winter crop through the UAV image for the crop growth monitoring.

Nutrient Balance during Crop (Forage Barley) Cultivation in Winter Season: A Weighing Lysimeter Study (중량식 라이시미터에서 동계 작물(청보리) 재배에 따른 밭토양 양분수지)

  • Jin-Hee An;Chan-Wook Lee;Jung-Hun Ok;Hye-Jin Park;Yo-Sung Song;Ye-Jin Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.211-219
    • /
    • 2023
  • Nutrient balance is an environmental indicator for assessing the potential of sustainable agriculture. Improving the use of arable land is crucial for reducing the nutrient balance. This study monitored soil water content, seepage water, crop growth, and nutrient balance in weighing lysimeters during forage barley (Hordeum vulgare L., "Yeongyang") cultivation from October to April. The study was conducted from 2020 to 2022, and the treatments included forage barley cultivation (clay loam, CL-FC; sandy loam, SL-FC) and bare soils. During the regeneration period (March to April), the soil moisture contents of bare and forage barley-cultivated soils were approximately 30-40% and 18.1-21.8%, respectively. The daily evapotranspiration of forage barley was 6.09 mm. The nitrogen balances for SL-FC and CL-FC were -0.43 to -2.93 g m-2 and -0.79 to 0.75 g m-2, respectively, which can be attributed to the higher nutrient uptake of forage barley in SL-FC than in CL-FC. Consequently, the forage barley cultivation in SL-FC can potentially reduce nutrient leaching during the spring rainy season. Furthermore, nutrient balance can be reduced by cultivating forage crops during the winter season.

Evaluation of Moisture and Feed Values for Winter Annual Forage Crops Using Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 동계사료작물 풀 사료의 수분함량 및 사료가치 평가)

  • Kim, Ji Hea;Lee, Ki Won;Oh, Mirae;Choi, Ki Choon;Yang, Seung Hak;Kim, Won Ho;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.114-120
    • /
    • 2019
  • This study was carried out to explore the accuracy of near infrared spectroscopy(NIRS) for the prediction of moisture content and chemical parameters on winter annual forage crops. A population of 2454 winter annual forages representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation($R^2$) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS calibration model to predict the moisture contents and chemical parameters had very high degree of accuracy except for barely. The $R^2$ and SECV for integrated winter annual forages calibration were 0.99(SECV 1.59%) for moisture, 0.89(SECV 1.15%) for acid detergent fiber, 0.86(SECV 1.43%) for neutral detergent fiber, 0.93(SECV 0.61%) for crude protein, 0.90(SECV 0.45%) for crude ash, and 0.82(SECV 3.76%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of winter annual forage for routine analysis method to evaluate the feed value.

Study on the Forage Cropping System of Italian Ryegrass and Summer Forage Crops at Paddy Field in Middle Region of Korea (중부지역 논에서 이탈리안 라이그라스와 하계 사료작물을 연계한 작부체계 연구)

  • Oh, Mirae;Choi, Bo Ram;Lee, Se Young;Jung, Jeong Sung;Park, Hyung Soo;Lee, Bae Hun;Kim, Ki-Yong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.141-146
    • /
    • 2021
  • This study was evaluated to compare annual productivity and feed value of Italian ryegrass and summer forage crops at paddy field in middle region of Korea. Italian ryegrass (Kowinearly) was used as winter forage crop, and forage rice (Youngwoo) and barnyard millet (Jeju) were used as summer forage crops. Each crop was cultivated using the standard forage cultivation method. The plant height, dry matter yield, crude protein content, and total digestible nutrient content of Italian ryegrass were 90.6 cm, 7,681 kg/ha, 9.2%, and 63.8%, respectively, and it was no significant difference by summer forage crops (p>0.05). The plant height of summer forage crops was the higher in barnyard millet than in forage rice (p<0.05). The dry matter, crude protein, and total digestible nutrient yields of summer forage crops were the higher in forage rice than in barnyard millet (p<0.05). Also, the feed value of summer forage crops was higher in forage rice than in barnyard millet. In conclusion, the combination of Italian ryegrass-forage rice was the most effective cropping system for annual forage production with high-yield and high-feed value, and it was considered the combination of Italian ryegrass-barnyard millet was good cropping system for annual forage production through reducing labor and cultivating stable at paddy field in middle region of Korea.