• Title/Summary/Keyword: 동결융해시험

Search Result 188, Processing Time 0.023 seconds

An Experimental Study on Resistance of rapid Freezing and Thawing of Chloride-inhibiting Low-Heat Cement (차염성 저발열시멘트의 급속동결융해 저항성에 관한 실험적 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Ju, Min-Kwan;Kim, Tae-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.589-592
    • /
    • 2008
  • This study was conducted to assess the durability of Chloride-inhibiting Low-Heat Cement while being subjected to freezing-thawing during winter seasons. Although durability varies slightly depending on the conditions of the jobsite, frost damage to concrete resulting from repeated freezing and thawing over the course of seasonal changes is the leading cause behind lowered concrete durability. in addition, concrete that has been subjected to freezing and thawing during the winter season develops a significant amount of expansive force at the core and begins to exhibit signs of damage, such as cracking, peeling, and detachment from the aggregate. Therefore, this study fabricated test specimens using a Chloride-inhibiting Low-Heat Cement(CLC) and the widely used blast furnace slag cement(BFS) and Ordinary Portland Cement(OPC) with water-to-cement ratios of 35%, 40% and 45%, respectively, to assess the durability index of the CLC as per resistance to freezing-thawing. The specimens were then tested using the KS F 2456 method (Testing method for resistance of concrete to rapid freezing and thawing) to measure the dynamic modulus of elasticity. The dynamic modulus of elasticity measurements were then used to derive the durability indices. By comparing the durability indices, it was confirmed that CLC, BFS, and OPC all had superior durability.

  • PDF

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.

Weathering Characteristics of Granite by Freeze-Thaw Cyclic Test (동결-융해 시험에 의한 화강암의 풍화 특성 연구)

  • Park, Yeon-Jun;You, Kwang-Ho;Yang, Kwang-Yong;Woo, Ik;Park, Chan;Song, Won-Kyung
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.215-224
    • /
    • 2003
  • Weathering in nature was simulated by freeze-thaw cyclic test which represents mechanical weathering. Measured physical properties were elastic wave velocities, absorption rate, volume change and weight change. Uniaxial compression tests were also conducted before and after the weathering tests. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities, uniaxial compression strength and Young's modulus were clearly decreased as weathering progresses. Test result can be used for the assessment of long-term stability of rock slopes.

Evaluation on Resistance of Chloride Attack and Freezing and Thawing of Connote with Surface Penetration Sealer (표면 침투제에 따른 콘크리트의 염화물 침투와 동결융해 저항성에대한 평가)

  • Yang, Eun-Ik;Kim, Myung-Yu;Lho, Byeong-Cheol;Kim, Jeong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.65-71
    • /
    • 2006
  • Concrete has a void, which exists as one of defect in concrete. If the porosity of concrete increases, durability of concrete decreases. In this paper, to improve surface void of concrete, surface penetration sealers are applied to specimen. And, it were investigated that the resistances of chloride penetration and freezing and thawing for concrete with surface penetration sealer of two types. According to the results, surface penetration sealer has not show a harmful influence on strength and resistance of freezing and thawing. Surface penetration sealers were effective in the resistance of chloride penetration.

Increase of strength and freezing-thawing resistance of porous concrete by Silica-fume (실리카흄을 사용(使用)한 투수(透水)콘크리트의 강도(强度) 및 동결융해저항성(凍結融解抵抗性))

  • Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Existing porous concrete has problems with reduction of strength due to freezing and thawing and exfoliation of aggregate at joints. In this study, a method for increasing strength and durability of porous concrete by using fine aggregate, silica-fume and high-range water-reducing agent was proposed by laboratory tests. Mixing ratio between silica-fume (10%) and fine aggregate (0%, 7%, 15%) was selected as a major test factor, and laboratory tests for compressive strength, flexural strength, permeability coefficient, porosity, freezing and thawing were conducted. Compressive strength and flexural strength were increased as the mixing ratio of fine aggregate was increased. However, permeability and freezing-thawing resistance were decreased due to reduction of porosity. Therefore, the ratio of fine aggregate should be limited to increase strength and durability of the porous concrete, while the mixing ratio of silica-fume should be over 10%.

Development of Rural Road Pavement Technology Using Cement Stabilizer (시멘트계 고화재를 활용한 농어촌도로 포장공법 개발)

  • Oh, Young-In;Kong, Gil-Yong;Kim, Seung-Wook
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.171-184
    • /
    • 2007
  • Chemical admixture stabilization has been extensively used in both shallow and deep stabilization in order to improve inherent properties of the soil such as strength and deformation behavior. An increment in strength, a reduction in compressibility, an improvement of the swelling or squeezing characteristics and increasing the durability of soil are the main aims of the admixtures for soil stabilization. Recently, the various advanced cement stabilizer mixing technique was developed. Advanced cement stabilizer mixing technique is environmentally-friendly and has an excellent mixing property and outstanding mixing speed. In this study, to develop the rural road pavement technology using cement stabilizer, compaction and unconfined compression test were performed with various mixing ratio and two types of soil(clay and silty soil). And the freezing/thaw test and bending strength test performed to develop suitable cement stabilizer material for stabilization of rural road. Based on the test results, the liquid types of cement stabilizer material and silty soil mixture are most suitable for rural road construction and although the mixing ratio is low, cement stabilizer mixture is effective for durability of rural road surface layer.

  • PDF

Effect of Packing Materials of Frozen Boar Semen on Sperm Characteristics and Reproductive Performance (동결정액 포장방법이 돼지정액의 성상 및 번식성적에 미치는 영향)

  • 김인철;이장희;김현종;이성호;박창식
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 2002
  • This study was carried out to investigate the effects of packing materials of frozen boar semen to improve reproductive performance efficiency in pig. Boars were raised at Swine Artificial Insemination Center in National Livestock Research Institute, Sunghwan, Chungnam, Korea. We compared packing protocols for frozen boar semen among 5$m\ell$ maxi-straw, 5$m\ell$ cryogenic-vial, and aluminum-pack. Cryogenic-vial packing material showed similar sperm characteristics compared with maxi-straw packing material when the sperm was frozen above 15cm from liquid nitrogen and thawed at 52$^{\circ}C$ for 190 seconds. We investigated different thawing times to find out the optimal condition of freezing and thawing protocol with cryogenic-vial. Freezing above 15cm from liquid nitrogen and thawing at 52$^{\circ}C$ for 190 seconds were the optimal protocol compared with 120 and 150 seconds. However, normal acrosome rates did not show any differences among thawing times. Post-thawing results of maxi-straw in water at 52$^{\circ}C$ for 45 seconds had better total motility and curve linear velocity than those of cryogenic-vial in water 52$^{\circ}C$ for 190 seconds. However, there were no differences on straightness and normal apical ridge of sperm between maxi-straw and cryogenic vial. Non-return rate, farrowing rate and litter size of sows inseminated with frozen boar semen of commercial farms were higher in the maxi-straw than cryogenic-vial, but there were no significant differences between maxi-straw and cryogenic-vial. In conclusion, there were no significant differences between maxi-straw and cryogenic-vial and so, we may replace cryogenic-vial packing method instead of maxi-straw packing method by improvement of freezing and thawing rate.

Effect of freezing and thawing on the drainage system for leakage treatment (유도배수공법에서 동결융해의 영향)

  • Kim, Dong-Gyou;Yim, Min-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1059-1075
    • /
    • 2017
  • The objective of this study was to evaluate the freezing and thawing resistance of the existing drainage system for leakage treatment of underground concrete structures operating in cold regions. The freezing and thawing test was conducted on 4 types of drainage system specimens to evaluate the freezing and thawing resistance of the drainage system. The freezing and thawing resistance was evaluated on 4 types of Hotty-gel, as a waterproofing material, connection methods and on two methods to fix the drainage board with Hotty-gel on the surface of cement concrete specimen. One cycle of the freeze-thaw testing was 48 hours (24 hours of freezing and 24 hours of thawing), and the temperatures of freezing and thawing were at $-18^{\circ}C$ and $10^{\circ}C$, respectively. Among the 4 types of Hotty-gel connection methods, leakage occurred after 28 cycles (8 weeks) of freeze-thawing only in the Hotty-gel connection method with the 'V' groove applied to the corner of the drainage board. No leakage occurred in the 3 types of Hotty-gel connection methods. In two fixing methods, leakage occurred in the method of fixing the drainage board on the cement concrete specimen using the washer, screw and plastic wall plug. Leakage occurred at one point after 10 cycles (3 weeks) of freezing and thawing. After 28 cycles (8 weeks) of freezing and thawing, leakage point increased to 5 points. As time passed, the leak point was not increased, but the amount of leakage was increased at each leak point. The Hotty-gel connection method with cross-sectional diagonal shape was evaluated to be the highest in the production efficiency considering the production time and manufacturing method of the Hotty-gel connection shape. In the construction efficiency considering the construction time and construction method, the fixing method of air nailer, fixed nail and washer was superior to that of the washer, screw and plastic wall plug.

Review of the Study on Mechanical Properties of Rock Under the Polar Climate Condition (극지 암석의 역학적 특성 분석에 관한 연구 동향)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.241-251
    • /
    • 2010
  • The polar region is in the limelight for an academic worth as well as plenty of natural resources. The study on the polar region was reviewed for better understanding of the polar region and its rock properties. The antarctica has a windy and dry climate along with the lowest temperature on the earth. The thermal distribution according to depth in the area was reported: The freezing-thawing process was repeated in shallow depth, and the temperature falls down below zero under the specific depth. There is a great temperature difference between the atmosphere and rock. A research reported for the degree of weathering of the antarctic slope by using Schmidt hammer and Taffoni test. The rock specimens weathered by repeated freezing-thawing process were tested of the shore hardness and uniaxial compressive strength: The rock strength gradually decreased as the freezing-thawing process was repeated. The comprehensive mechanical properties of the polar region rocks and the relationship between the laboratory weathering test result and the real rock property change in the site remain as future research topics.

Freeze-Thaw Durability and Carbonation of Concrete Surface Protecting materials (콘크리트 표면보호재 종류에 따른 동결융해 및 중성화 내구특성)

  • Lee, Beung-Duk;Kim, Hyun-Joong;Kwon, Young-Rak;Kim, Sye-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.593-596
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Use of deicing chemicals has been and will continue to be a major part of concrete structure in the highway. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. In this study, Use of deicing chemicals has been and will continue to be a major part of highway freeze-thaw durability and carbonation of concrete surface protecting materials

  • PDF