• Title/Summary/Keyword: 돈나무

Search Result 22, Processing Time 0.015 seconds

Spray Modeling: An Augmented Reality Based Tangible 3D Modeling Interface (스프레이 모델링: 증강현실 기반의 실체적인 3차원 모델링 인터페이스 제안)

  • Jung, Hee-Kyoung;Nam, Tek-Jin
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.119-128
    • /
    • 2005
  • This paper presents an intuitive 3D modeling interlace based on a field study and prototype development. The process and tools of modeling were observed in workshops of professional design model making, day modeling, wood caning and glass crafting. The Spray Modeling interlace was developed from the observational analysis of the field study. It is a 3D modeling interface which combines particle spraying and day modeling in Virtual or Augmented Reality space. Virtual volume particles are sprayed on frames in Augmented Reality space as day modeling. It adopts a real air spay gun as a tangible interface device which provides coherent sound and air-force feedback. The prototype development and a user study showed that the interface supports new patterns of form development and expression. Control interfaces and requirements of auxiliary devices were found to be improved. This study examines the potential of the new interlace for designers working in 3D virtual and augmented reality. The new spraying interface is also expected to be used as an alternative interface in 3D computer workspace, games, education software and media art.

  • PDF

Prediction on Habitat Distribution in Mt. Inwang and Mt. An Using Maxent (Maxent 모형을 활용한 인왕산-안산 서식지 분포 예측)

  • Seo, Saebyul;Lee, Minjee;Kim, Jaejoo;Chun, Seung-Hoon;Lee, Sangdon
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.432-441
    • /
    • 2016
  • In this study, we predicted species distributions in Mt. Inwang and Mt. An as preceding research to build ecological corridor by considering connectivity of habitats which have been fragmented in the city. We analyzed species distributions by using Maxent (Maximum Entropy Approach) model with species presence. We used 23 points of mammals and 15 points of Titmouse (Parus major, P. palustris, P. varius) as target species from appearance points of species examined. We build 4 geography factors, 4 vegetation factors, and 2 distance factors as model variables In case of mammals, factors that affected species distribution model was Digital Elevation Model(DEM, 34%) followed by Distance from edge forest to interior (24.8%) and Species of tree (10%). On the other hand, in case of Parus species, factors that affected species distribution model were DEM (39.6%) followed by distance from road (35.4%) and Density-class (8.2%). Therefore, birds and mammals prefer interior of mountain, and this area needs to be protected.