• Title/Summary/Keyword: 도플러 영상

Search Result 108, Processing Time 0.025 seconds

A Study on the Synthetic Aperture Radar System Motion Compensation Technique (SAR(Synthetic Aperture Radar)시스템 요동보상기법 연구)

  • Kang, Eun-Kyun;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • In this paper, the image formation by the motion compensation technique for Synthetic Aperture Radar system(SAR) were realized through the computer simulation. The motion compensation technique performed image data with the range compression, the compensation procedure, the azimuth compensation and the noise elimination procedure. The range compression procedure transform the SAR raw data into the frequency domain and correlate with the range reference function and then inversely transform into the time domain. The compensation procedure contain the aircraft fluctuations compensation and the radar image degrading effect elimination procedure which was caused by image formation algorithm itself. The aircraft fluctuations compensation procedure perform the first stage which correct the phase angle and the second stage which calculate the Doppler frequency and determine the coordinate of the received signal. The radar image degrading effect elimination procedure also perform range migration compensation and the image defocussing effect compensation. The azimuth compression procedure transform the compensation data to the frequency domain and correlate with the azimuth reference function. The azimuth correlated data are inversely transformed to the time domain which is called SAR image data. When the above procedure were completed, the image data contains the received signals mixed with noise. The threshold technique was applied to elimination the noise from the mixed image data.

Internal Structure and Velocity Field of the Impinging Diesel Spray on the Wall (디젤 충돌 분무의 발달 과정 및 내부 유동 특성)

  • Chon, M.S.;Suh, S.K.;Park, S.W.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2005
  • The purpose of this study is to investigate the internal structure of the impinged diesel spray at various experimental conditions. To examine the effect of various factors on the development of a diesel spray impinging on the wall, experiments were conducted at the various Injection pressures, wall distances from the nozzle tip and angles of wall inclination. The PIV system consists of a double pulsed Nd:YAG laser was utilized to analyze the internal flow structure of impinged diesel sprays. The velocity fields from the PIV system were compared with the results measured by the phase Doppler particle analyzer(PDPA)system. The results show that internal flow pattern of the impinged spray was similar with the results from the PDPA system. The radial velocity of the impinged spray was increased with the increase in the injection pressure and near the nozzle-wall distance. The generation of vortex was also promoted with the Increase in angles of wall inclination.

  • PDF

Spray Breakup Characteristics of LRE Injector (액체로젯엔진 인젝터의 분무 분열특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.157-160
    • /
    • 2007
  • Spray characteristics of an injector employed in liquid rocket engine is investigated by Particle Image Velocimetry and Dual-mode Phase Doppler Anemometry measurements. Instantaneous plane images captured by PIV technique are examined in order to judge a pass-fail criteria of spray injection performance. DPDA technique is also applied in order to measure the velocity and diameter of spray droplets. The eternal objective of this study is to evaluate an injector performance which may be utilized for the design of brand-new ones through the clear understanding of spray characteristics.

  • PDF

Simulation of Moving Target by SAR Phase Shift (Range 압축 데이터 위상변위를 이용한 해수면 이동체의 시뮬레이션 고찰)

  • Kim, Youn-Seop;Yang, Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.147-150
    • /
    • 2009
  • 본 논문에서는 해상 클러터를 고려하여 움직이는 물체의 SAR 원시 데이터를 생성하고, SAR 원시 데이터 중간 처리 결과인 range 압축 데이터의 azimuth 차분 신호로부터 물체의 속도를 측정하는 방법을 여러 가지 환경에 적용하여 그 정확도 및 적용 가능한 경우를 분석하였다. 움직이는 물체에 의한 도플러 중심 주파수의 변이가 azimuth 차분 신호에서 위상의 변화를 가져오므로, 이를 이용하여 움직이는 물체의 속도를 측정하는 알고리듬을 정리하였다. 이 알고리듬을 위에서 생성한 range 압축 데이터에 적용하여, 타깃이 되는 물체가 독립적으로 존재하는 경우, azimuth 상에 또 다른 속도를 가지는 산란체가 존재하는 경우, 그리고 높은 후방산란계수를 가지는 육지에 타깃이 되는 물체가 인접해 있는 경우를 가정하여 속도를 측정하였다. 그 결과, 타깃이 되는 물체가 SAR 영상에서 256 픽셀 범위 내에서 독립적으로 존재할 경우에는 높은 정확도로 물체의 속도를 측정할 수 있었으나, 128 픽셀 범위에 다른 움직이는 물체가 존재하거나, 높은 후방산란 계수를 갖는 육지와 인접해 있을 경우에는 최대 1m/s 의 오차를 나타냈다. 이는 주변 산란체의 영향에 의해 신호가 교란되어 목표물의 위치를 추정하는 과정에서 오차가 발생했기 때문이다.

  • PDF

Experimental Study of Drone Detection and Classification through FMCW ISAR and CW Micro-Doppler Analysis (고해상도 FMCW 레이더 영상 합성과 CW 신호 분석 실험을 통한 드론의 탐지 및 식별 연구)

  • Song, Kyoungmin;Moon, Minjung;Lee, Wookyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.147-157
    • /
    • 2018
  • There are increasing demands to provide early warning against intruding drones and cope with potential threats. Commercial anti-drone systems are mostly based on simple target detection by radar reflections. In real scenario, however, it becomes essential to obtain drone radar signatures so that hostile targets are recognized in advance. We present experimental test results that micro-Doppler radar signature delivers partial information on multi-rotor platforms and exhibits limited performance in drone recognition and classification. Afterward, we attempt to generate high resolution profile of flying drone targets. To this purpose, wide bands radar signals are employed to carry out inverse synthetic aperture radar(ISAR) imaging against moving drones. Following theoretical analysis, experimental field tests are carried out to acquire real target signals. Our preliminary tests demonstrate that high resolution ISAR imaging provides effective measures to detect and classify multiple drone targets in air.

Effects of Fuel-Injection Pressure on the Spray Breakup Characteristics in Small LRE Injector (소형 액체로켓엔진 인젝터의 분무 분열특성에 대한 연료분사압력의 영향)

  • Jung, Hun;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.50-57
    • /
    • 2007
  • Spray characteristics of an injector in a small liquid rocket engine (LRE) is characterized by Particle Image Velocimetry (PIV) and Dual-mode Phase Doppler Anemometry (DPDA). Instantaneous plane images captured by PIV are examined for the qualitative prediction of spray breakup with the setup of evaluation technique for effect of spray angles on injector performance. DPDA is also applied in order to quantify the average velocity, turbulent intensity, SMD, and number density of spray droplets along the spray stream distance leading to precise observation of spray atomization behavior. An objective of the study is the derivation of design parameters of new injectors and the establishment of performance criteria through the clear understanding of spray characteristics.

Visualization of Vortex Flow around Coolant Outlets Using PIV and LDV (PIV와 LDV를 이용한 냉각수 토출구 주위의 와류 가시화 연구)

  • Hong, Ji-Woo;Shin, Su-Yong;Ahn, Byoung-Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.136-142
    • /
    • 2021
  • Submerged and semi-submerged vehicles expel cooling water through an outlet. In this process, induced noise and vibration by the flow around the outlet have been reported, and it may cause problems directly related to survivability of the navy vessels. The coolant outlet has a net-type structure and circular columns are mostly used. In this study, flow measurements using PIV and LDV were performed for different type outlets; conventional (flat plate with round bar) and improved (flat and flat plate) configurations. Experiments were conducted at a cavitation tunnel where pressure and steady flow rate conditions are ensured for sufficient time to measure the flow. The average velocity field of the outlets were measured and compared through LDV measurements, and instantaneous vorticities were evaluated through PIV measurements. The results show that the improved type of the outlet is advantageous in terms of flow stability compared to the conventional type of the outlet.

Correction of Continuous Motion Effects for Airborne FMCW-SAR System (항공기 기반 FMCW-SAR 시스템의 연속이동효과 보정)

  • Hwang, Ji-hwan;Jung, Jungkyo;Kim, Duk-jin;Kim, Jin-Woo;Shin, He-Sub;Ok, Jae-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.410-418
    • /
    • 2017
  • Results of an analysis of the continuous motion effect for FMCW-SAR system and a signal processing to correct it are presented in this paper. SAR images reconstructed by back-projection algorithm are included as well. To analyze how platform velocity and sampling frequency affect the continuous motion effect, FMCW signal model was used, and the signal processing in time-doppler(t, $k_u$) domain was adopted. Then, back-projection algorithm and modified matched-filter was used to reconstruct SAR images, and it was validated using measured data by airborne FMCW-SAR system in X-band frequency.

An Efficient Method to Extract the Micro-Motion Parameter of the Missile Using the Time-Frequency Image (시간-주파수 영상을 이용한 효과적인 미사일 미세운동 변수 추출 방법)

  • Choi, In-O;Kim, Si-Ho;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.557-565
    • /
    • 2016
  • It is very difficult to intercept the missiles because of the small radar cross-section and the high maneuverability. In addition, due to the decoy with the similar motion parameters, additional features other than those of the translation motion parameters need to be developed. In this paper, for the successful recognition of missiles, we propose an efficient method to extract micro-motion parameters and scatterers of the missile engaged in the micro motion. The proposed method extracts motion parameters and scatterers by using the matching score between the modeled micro-Doppler function and the time-frequency binary image as a cost function. Simulation results using a target composed of the point scatterer show the parameters and the scatterers were accurately extracted.

A Development of Non-Invasive Body Monitoring IOT Sensor for Smart Silver Healthcare (스마트 실버 헬스케어를 위한 비접촉 인체감지 IOT 센서 개발)

  • Kang, Byung Wuk;Kim, Sang Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.28-34
    • /
    • 2018
  • This paper is composed of a passenger management system using a temperature sensing module, a PIR sensor module for detecting movement inside a room, and a smart breath sensing module for determining a sleeping state. An embedded sensor module and a communication system integrated the sensing part and the algorithm driving part. As the aging society is accelerating and becoming more upgraded, the social cost of Silver Care increases, and in order to protect privacy, it is necessary to reduce costs by developing efficient smart silver care devices. The proposed non - image human body detection IOT sensor system is implemented by hardware and software and has superior performance compared with conventional image monitoring method.