• Title/Summary/Keyword: 도착시각제어

Search Result 5, Processing Time 0.019 seconds

A Base Study on the Construction of Optimal Operating Systems using the Optimal Traffic Intensity in the Container Terminal (최적교통강도를 이용한 컨테이너 터미널의 최적 운영체계 구축에 관한 기초적 연구)

  • Lee, Sang-Yong;Jung, Hun-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.85-94
    • /
    • 2005
  • The scale and operating conditions of logistical systems very sensitively varies according to the variation of traffic intensity that is affected by the arrival characteristics of trucks and the attributes of loading/unloading services in logistics facilities. More exactly, logistics costs are incurred according to variations of traffic intensity. which are intimately linked with in a given time period. Also. although traffic intensity changes minutely, the range of cost variation is wide. Nevertheless, with regard to operating logistics systems, the existing studies make no attempt to analyze these factors. Therefore, it was the purpose of this study to determine the optimal traffic intensity to minimize excessive logistics costs resulting from the generation of unnecessary costs such as waiting costs and overcosts in operating a facility. For the purposes of this analysis. a determination model of optimal traffic intensity was constructed according to queuing theory. The inflow/outflow conditions of trucks and the terminal operational conditions were collected from an off-dock container terminal in Busan. On the basis of this data. the optimal traffic intensity that could off-set excessive waiting and operating costs was determined quantitatively. Also. using the optimal traffic intensity to be determined. we consider the improvements of operating system in the logistics facilities.

A Fusion Priority Signal Control Algorithm for Emergency Vehicles (긴급차량 융합형 우선신호 제어 알고리즘 개발)

  • Lee, Soong-bong;Lee, Jin-soo;Jang, Jae-min;Lee, Young-Ihn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.113-127
    • /
    • 2018
  • This study develops a fusion priority signal control algorithm to pass without delay in emergency events. Fusion priority signal control is method combined center control with local control. The center control method applies signal times for each signalized intersection on the emergency vehicle's route when an emergency call is received. As signals are controlled before the emergency vehicle leaves for its destination, it is possible to clear the queues at each intersection more effectively. However, since the traffic information (speed, position) of the real-time emergency vehicle is not used, the intersection arrival time predicted by center control and actual arrival time of the emergency vehicle may be different from each other. In the case, it is possible to experience a delay caused by the signal. Local control method operate priority signal use the real-time information of EV, but there is a limitation that queue elimination time can not be reflected. In this study, fusion(center+local) control algorithm is proposed to compensate the disadvantages of center and local control also maximizing its advantages. Proposed algorithm is expected to decrease delay time of EV in emergency situation.

Traffic Signal Control Algorithm for Isolated Intersections Based on Travel Time (독립교차로의 통행시간 기반 신호제어 알고리즘)

  • Jeong, Youngje;Park, Sang Sup;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.71-80
    • /
    • 2012
  • This research suggested a real-time traffic signal control algorithm using individual vehicle travel times on an isolated signal intersection. To collect IDs and passing times from individual vehicles, space-based surveillance systems such as DSRC were adopted. This research developed models to estimate arrival flow rates, delays, and the change rate in delay, by using individual vehicle's travel time data. This real-time signal control algorithm could determine optimal traffic signal timings that minimize intersection delay, based on a linear programming. A micro simulation analysis using CORSIM and RUN TIME EXTENSION verified saturated intersection conditions, and determined the optimal traffic signal timings that minimize intersection delay. In addition, the performance of algorithm varying according to market penetration was examined. In spite of limited results from a specific scenario, this algorithm turned out to be effective as long as the probe rate exceeds 40 percent. Recently, space-based traffic surveillance systems are being installed by various projects, such as Hi-pass, Advanced Transportation Management System (ATMS) and Urban Transportation Information System (UTIS) in Korea. This research has an important significance in that the propose algorithm is a new methodology that accepts the space-based traffic surveillance system in real-time signal operations.

Development of sound location visualization intelligent control system for using PM hearing impaired users (청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발)

  • Yong-Hyeon Jo;Jin Young Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.105-114
    • /
    • 2022
  • This paper is presents an intelligent control system that visualizes the direction of arrival for hearing impaired using personal mobility, and aims to recognize and prevent dangerous situations caused by sound such as alarm sounds and crack sounds on roads. The position estimation method of sound source uses a machine learning classification model characterized by generalized correlated phase transformation based on time difference of arrival. In the experimental environment reproducing the road situations, four classification models learned after extracting learning data according to wind speeds 0km/h, 5.8km/h, 14.2km/h, and 26.4km/h were compared with grid search cross validation, and the Muti-Layer Perceptron(MLP) model with the best performance was applied as the optimal algorithm. When wind occurred, the proposed algorithm showed an average performance improvement of 7.6-11.5% compared to the previous studies.

Field Application Analysis of Center Control Emergency Vehicle Preemption System (중앙제어방식 긴급자동차 우선신호 현장적용성 분석)

  • Lee, Young-Hyun;Han, Seung-Chun;Jeong, Do-Young;Kang, Jin-Dong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.137-154
    • /
    • 2019
  • This study analysed the center control emergency vehicle preemption[EVP] test result on the 1.782 km section around Gangbuk Fire Station. The pros and cons between center control and site control EVP was compared through the review of existing research. The test site was selected based on the higher link speed for choosing low congested area and 4 to 6 lane road. EVP operates green extension under the estimated arrival time to each intersection. This study is about EVP system field application and its evaluation by analyzing EVP operation result with the emergency vehicle's trace, GPS data. The impact on the surrounding traffic was analysed in delay from the queue length survey. Analysis showed the decrease in averge travel time 41.81%, but the increase in delay of surrounding traffic slightly. It is expected that EVP can be applied to the expanded area by researching EVP compensation scheme.