• Title/Summary/Keyword: 도어 개폐력

Search Result 6, Processing Time 0.019 seconds

Door Effort Analysis for Hybrid Door Checker (하이브리드 도어 체커 개폐력 해석)

  • Kang, Sung-Jong;Kim, Dong-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.52-57
    • /
    • 2012
  • Proper door effort is required for the safety of passenger and pedestrian while securing door operating convenience. 3D finite element analyses for a hybrid door checker were carried out to estimate door checker arm resistance force. And, from the estimated door checker arm resistance force and theoretically calculated self-closing force, door effort was predicted. The analysis results at checker arm peaks showed excellent correlation with the test results. Also, in order to reduce solving time, a modified model with simple spring element was investigated. Finally an equation to easily calculate checker arm resistance force from checker arm shape and spring constant was suggested and its usefulness in early design stage was discussed.

Prediction of Assistance Force for Opening/Closing of Automobile Door Using Support Vector Machine (서포트 벡터 머신을 이용한 차량도어의 개폐 보조력 예측)

  • Yang, Hac-Jin;Shin, Hyun-Chan;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • We developed a prediction model of assistance force for the opening/closing of an automobile door depending on the condition of the parking ground. The candidates of the learning models for the operating assistance force were compared to determine the proper force according to the slope and user's force, etc. The reduced experimental model was developed to obtain learning data for the estimation model. The learning algorithm was composed to predict the assistance force to incorporate real assistance force data. Among these algorithms, an Artificial Neural Network (ANN) and Support Vector Machine(SVM) were applied and the adaptability was compared between these models. The SVM provided more adaptability for the learning process of the door assistance force prediction. This paper proposes a system for determining the assistance force to control a door motor to compensate for the deviation of required door force in the slope condition, as needed in the plane condition.

Interference-free French door design using four-bar linkage mechanism (4절 링크를 이용한 프렌치 도어의 간섭 방지 설계)

  • Lee, Jin-Gyu;Yun, Jae-Deuk;Jung, Yoong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2031-2037
    • /
    • 2011
  • The French doors have the advantage that they can use inner space more efficiently due to without of partition between two rooms. However, when they are used for refrigerators, the door gaskets for sealing may cause interference of themselves during opening and closing, which causes fatal effect on sealing by worn out of the gaskets as well as increases door opening force. This research proposes a new mechanism for the French doors using the parallelogram motion of 4-bar linkage mechanism, which does not make any interference between gaskets. We manufactured the French doors of proposed mechanism to verify that they do not cause any interference during opening and closing, as well as opening force is decreased. The use of our developed mechanism is not limited to refrigerators, but can be extended to other industrial products with the French doors.

Analysis of Door Effort using 2D Model (2차원 모델을 이용한 도어 개폐력 해석)

  • 김창원;강성종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.131-137
    • /
    • 2003
  • Proper door effort, required force to open or close a vehicle door, is an essential door design factor for the safety of passengers and pedestrians. Section shape of the door checker arm is the most influential design parameter for achieving a door effort design target. In this research. an analysis procedure to predict door effort using a simplified plane strain finite element model wes investigated for two passenger cars, for which mechanism of checker systems were: different. The variation of checker arm force to be required during moving on arm in opening and closing direction was estimated through analysis, and the result was transformed to the door effort with respect to door opening angle by considering door characteristics. Also, the self·closing force due to door weight was theoretically calculated and added to the door effort from checker arm force. Finally the estimated results of door effort were compared with test results.

Door Effort Analysis for Door Checker of Integrated Type with Torsion Bar Spring (토션 바 스프링을 적용한 일체형 도어체커 개폐력 해석)

  • Yoon, Sang-Min;Kang, Sung-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.86-91
    • /
    • 2012
  • Door effort was calculated for a new door checker with torsion bar spring and integrated checker case by FE analysis. A hybrid checker arm which has peaks and valleys only on the upper surface was adopted to reduce noise in operation and make operation with more distinctive steps. The checker arm was modeled using shell elements to estimate both the longitudinal and the lateral resistance force by checker arm. By combining the checker arm resistance force obtained from analysis and the door self-closing force by the theoretical calculation, door effort was predicted to show the good correlation with test results. In addition the unrolling effect of roller model was investigated and a new roller type for more smooth rolling was studied.

Development of a Car Door Checker for Reducing Noise in Opening (승용차 도어의 개폐 이음 저감을 위한 도어체커 개발)

  • An, Byeongju;Son, Sungmin;Yun, Jaedeuk;Jung, Yoongho;Kim, Hyongdon;Shin, Jongil;Seo, Seungwoo;Jang, Kookjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.396-401
    • /
    • 2015
  • A door checker holds a car door at several opening angles and limits the maximum door opening, so that the door does not bump against to passengers. Recently, the performance of door checker becomes more important as the feeling of door opening and closing effects on the quality of a car. However, some of door checkers make squealing noise when they are used for ages, which causes consumer's complaints as well as decreasing commercial value of the product. In this study, after various experiments for the noise, we concluded that the major reasons of the noise are acceleration of wearing and loss of lubricant due to impurities in working parts. Therefore, we developed a new mechanism of door checker which can resolve the major reasons of the noise. The developed mechanism is effective to prevent inflow of impurities and loss of lubricant by locating working parts in the case. We also proved that the developed mechanism does not make any noise after the test of 50,000 times of operations.