• Title/Summary/Keyword: 도심지 변화탐지

Search Result 17, Processing Time 0.021 seconds

A Study on Change Detection of City Using Aerial Photo (항공사진을 활용한 도심지 변화탐지에 관한 연구)

  • Kim, Kam-Lae;Ahn, Byung-Gu;Lee, Ka-Hyeong;Cheong, Hae-Jin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.191-196
    • /
    • 2007
  • 본 연구에서는 변화탐지 기법을 통한 도심지 건축물의 판독가능성을 검토하기 위하여 항공사진 단영상 및 정사영상을 이용하여 영상정규화와 기하보정을 통한 image subtraction기법을 적용하여 변화 탐지를 실시하였다. 변화 탐지를 위한 임계값 설정에서 단영상 변화탐지는 임계값 90% 이상에서는 일정면적 이상의 변화지역이 뚜렷이 나타났으며 정사영상 변화탐지는 임계값 $70{\sim}80%$ 이상의 결과영상이 변화탐지에 적절한 것으로 나타났다. 단영상과 정사영상 변화탐지 결과를 필터링을 통해 일정면적 이하를 제거한 후 2002년 영상과 중첩하여 변화지역을 확인 하였다. 변화탐지 기법을 판독 작업에 활용한다면 판독 우선순위 결정에 많은 도움이 될 뿐만 아니라 영상의 종류와 필요에 따른 다양한 변화탐지 기법을 적용한다면 판독 작업에 많은 활용성을 기대할 수 있다.

  • PDF

Development and Evaluation of a Texture-Based Urban Change Detection Method Using Very High Resolution SAR Imagery (고해상도 SAR 영상을 활용한 텍스처 기반의 도심지 변화탐지 기법 개발 및 평가)

  • Kang, Ah-Reum;Byun, Young-Gi;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.255-265
    • /
    • 2015
  • Very high resolution (VHR) satellite imagery provide valuable information on urban change monitoring due to multi-temporal observation over large areas. Recently, there has been increased interest in the urban change detection technique using VHR Synthetic Aperture Radar (SAR) imaging system, because it can take images regardless of solar illumination and weather condition. In this paper, we proposed a texture-based urban change detection method using the VHR SAR texture features generated from Gray-Level Co-Occurrence Matrix (GLCM). In order to evaluate the efficiency of the proposed method, the result was compared, visually and quantitatively, with the result of Non-Coherent Change Detection (NCCD) which is widely used for the change detection of VHR SAR image. The experimental results showed the greater detection accuracy and the visually satisfactory result compared with the NCCD method. In conclusion, the proposed method has shown a great potential for the extraction of urban change information from VHR SAR imagery.

Detection of Urban Expansion and Surface Temperature Change using Landsat Satellite Imagery (Landsat 위성영상을 이용한 도시확장 및 지표온도 변화 탐지)

  • Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.59-65
    • /
    • 2005
  • It is very important to detect land cover/land use change from the past and to use it for future urban plan. This paper investigated the application of Landsat satellite imagery for detecting urban growth and assessing its impact on surface temperature in the region. Land cover/land use change detection was carried out by using 30m resolution Landsat satellite images and hierarchial approach was introduced to detect more detail change on the changing area through high resolution aerial photos. Also, surface temperature according to land cover/land use was calculated from Landsat TM thermal infrared data and compared with real temperature to analyze the relationship between urban expansion and surface temperature. As a result, the urban expansion has raised surface radiant temperature in the urbanized area. The method using remote sensing data based on GIS was found to be effective in monitoring and analysing urban growth and in evaluating urbanization impact on surface temperature.

  • PDF

Correction of Lunar Irradiation Effect and Change Detection Using Suomi-NPP Data (VIIRS DNB 영상의 달빛 영향 보정 및 변화 탐지)

  • Lee, Boram;Lee, Yoon-Kyung;Kim, Donghan;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.265-278
    • /
    • 2019
  • Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data help to enable rapid emergency responses through detection of the artificial and natural disasters occurring at night. The DNB data without correction of lunar irradiance effect distributed by Korea Ocean Science Center (KOSC) has advantage for rapid change detection because of direct receiving. In this study, radiance differences according to the phase of the moon was analyzed for urban and mountain areas in Korean Peninsula using the DNB data directly receiving to KOSC. Lunar irradiance correction algorithm was proposed for the change detection. Relative correction was performed by regression analysis between the selected pixels considering the land cover classification in the reference DNB image during the new moon and the input DNB image. As a result of daily difference image analysis, the brightness value change in urban area and mountain area was ${\pm}30$ radiance and below ${\pm}1$ radiance respectively. The object based change detection was performed after the extraction of the main object of interest based on the average image of time series data in order to reduce the matching and geometric error between DNB images. The changes in brightness occurring in mountainous areas were effectively detected after the calibration of lunar irradiance effect, and it showed that the developed technology could be used for real time change detection.

Urban Building Change Detection Using nDSM and Road Extraction (nDSM 및 도로망 추출 기법을 적용한 도심지 건물 변화탐지)

  • Jang, Yeong Jae;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.237-246
    • /
    • 2020
  • Recently, as high resolution satellites data have been serviced, frequent DSM (Digital Surface Model) generation over urban areas has been possible. In addition, it is possible to detect changes using a high-resolution DSM at building level such that various methods of building change detection using DSM have been studied. In order to detect building changes using DSM, we need to generate a DSM using a stereo satellite image. The change detection method using D-DSM (Differential DSM) uses the elevation difference between two DSMs of different dates. The D-DSM method has difficulty in applying a precise vertical threshold, because between the two DSMs may have elevation errors. In this study, we focus on the urban structure change detection using D-nDSM (Differential nDSM) based on nDSM (Normalized DSM) that expresses only the height of the structures or buildings without terrain elevation. In addition, we attempted to reduce noise using a morphological filtering. Also, in order to improve the roadside buildings extraction precision, we exploited the urban road network extraction from nDSM. Experiments were conducted for high-resolution stereo satellite images of two periods. The experimental results were compared for D-DSM, D-nDSM, and D-nDSM with road extraction methods. The D-DSM method showed the accuracy of about 30% to 55% depending on the vertical threshold and the D-nDSM approaches achieved 59% and 77.9% without and with the morphological filtering, respectively. Finally, the D-nDSM with the road extraction method showed 87.2% of change detection accuracy.

Building Change Detection Methodology in Urban Area from Single Satellite Image (단일위성영상 기반 도심지 건물변화탐지 방안)

  • Seunghee Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1097-1109
    • /
    • 2023
  • Urban is an area where small-scale changes to individual buildings occur frequently. An existing urban building database requires periodic updating to increase its usability. However, there are limitations in data collection for building changes over a wide urban. In this study, we check the possibility of detecting building changes and updating a building database by using satellite images that can capture a wide urban region by a single image. For this purpose, building areas in a satellite image are first extracted by projecting 3D coordinates of building corners available in a building database onto the image. Building areas are then divided into roof and facade areas. By comparing textures of the roof areas projected, building changes such as height change or building removal can be detected. New height values are estimated by adjusting building heights until projected roofs align to actual roofs observed in the image. If the projected image appeared in the image while no building is observed, it corresponds to a demolished building. By checking buildings in the original image whose roofs and facades areas are not projected, new buildings are identified. Based on these results, the building database is updated by the three categories of height update, building deletion, or new building creation. This method was tested with a KOMPSAT-3A image over Incheon Metropolitan City and Incheon building database available in public. Building change detection and building database update was carried out. Updated building corners were then projected to another KOMPSAT-3 image. It was confirmed that building areas projected by updated building information agreed with actual buildings in the image very well. Through this study, the possibility of semi-automatic building change detection and building database update based on single satellite image was confirmed. In the future, follow-up research is needed on technology to enhance computational automation of the proposed method.

Detection of Heat Change in Urban Center Using Landsat Imagery (Landsat 영상을 이용한 도심의 열변화 탐지)

  • Kang, Joon-Mook;Ka, Myung-Seok;Lee, Sung-Soon;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.197-206
    • /
    • 2010
  • Recently, developed countries have continuously been trying to recognize many issues about heat island in urban area and to make up countermeasures for them. This research is designed to extract change of land cover in the area under condition of land development with satellite images and to analyze its effect on the heat change in there. Heat change upon change of land cover in daejeon was analyzed with the four Landsat satellite images taken in April 1985, August 1994, May 2001, and May 2009. In order to measure the temperature on the surface in the city, the land surface temperature was produced with Landsat TM Band 6. Heat change is to detected with it. As a result, The urban area has been increased up to 23.59 percent. On the other hand, the forest area has been decreased up to 27.91%. Due to the urbanization, the temperature on the surface in urban center was higher than surrounding area. In that case, the temperature of urban center area was higher 2.4 to $5.7^{\circ}C$ compared with the forest area.

Detecting and Restoring Occlusion Area for Generating Digital Orthoimage (수치정사투영영상 제작을 위한 폐색영역의 탐지와 복원)

  • 권오형;김용일;김형태
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.143-148
    • /
    • 2000
  • 레이저 프로파일링 시스템의 등장으로, 기존에는 얻을 수 없었던 도시 지역에 대한 DTM 취득이 가능해졌고, 더욱 정확한 정사투영영상 또한 제작할 수 있게 되었다. 하지만, 높이 변화를 보이는 자연지물과 인공구조물이 있는 지역에 대해 기존의 정사투영사진 제작기법이 적용될 때, 폐색이나 이중매핑과 같은 문제가 발생하게 된다. 특히 고층건물이 밀집되어 있는 도심지에서 이러한 현상은 두드러져 정사투영영상의 품질을 저해하는 주요한 원인이 된다. 따라서, 본 연구에서는 카메라의 외부표정요소와 DTM을 이용하여 폐색영역을 탐지하고, 폐색이 안된 다른 영상의 정보를 통해 폐색영역을 복원하여 더욱 완전한 정사투영을 제작할 수 있는 알고리즘을 제안하였다. 제안된 알고리즘에 의해 자연지물이나 인공고조물에 의한 폐색영역을 탐지할 수 있었고 폐색영역의 많은 부분을 부가영상을 이용하여 복원하였다. 건물에 대한 사전지식을 이용하여 폐색영역을 탐지하는 국내 연구가 있지만, 본 연구는 건물에 대한 부가정보나 모델링을 사용하지 않고 DTM과 카메라 외부표정요소만을 이용하여 폐색영역을 탐지한다는 점에서 이러한 연구들과 차별성을 가진다.

  • PDF

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.

Color Vision Based Close Leading Vehicle Tracking in Stop-and-Go Traffic Condition (저속주행환경에서 컬러비전 기반의 근거리 전방차량추적)

  • Rho, Kwang-Hyun;Han, Min-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.3037-3047
    • /
    • 2000
  • This paper describes a method of tracking a close leading vehicle by color image processing using the pairs of tail and brake lights. which emit red light and are housed on the rear of the vehicle in stop-and-go traffic condition. In the color image converted as an HSV color model. candidate regions of rear lights are identified using the color features of a pair of lights. Then. the pair of tailor brake lights are detected by means of the geometrical features and location features for the pattern of the tail and brake lights. The location of the leading vehicle can be estimated by the location of the detected lights and the vehicle can be tracked continuously. It is also possible to detect the braking status of the leading vehicle by measuring the change in HSV color components of the pair of lights detected. In the experiment. this method tracked a leading vehicle successfully from urban road images and was more useful at night than in the daylight. The KAV-Ill (Korea Autonomous Vehicle- Ill) equipped with a color vision system implementing this algorithm was able to follow a leading vehicle autonomously at speeds of up to 15km!h on a paved road at night. This method might be useful for developing an LSA (Low Speed Automation) system that can relieve driver's stress in the stop-and-go traffic conditions encountered on urban roads.

  • PDF