• Title/Summary/Keyword: 도시철도 차량

Search Result 316, Processing Time 0.026 seconds

A Conceptual Design of Maintenance Information System Interlace for Real-Time Diagnosis of Driverless EMU (무인전동차의 실시간 상태 진단을 위한 유지보수 정보시스템 인터페이스에 대한 개념설계)

  • Han, Jun-hee;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.63-68
    • /
    • 2017
  • Although automated metro subway systems have the advantage of operating a train without a train driver, it is difficult to detect an immediate fault condition and take countermeasures when an unusual situation occurs. Therefore, it is important to construct a maintenance information system (MIS) that detects the vehicle failure/status information in real time and maintains it efficiently in the depot of the railway's vehicles. This paper proposes a conceptual design method that realizes the interface between the train control system (TCS), the operation control center train control monitoring system (OCC-TCMS) console, and the MIS using wireless communication network in real-time. To transmit a large amount of information on 800,000 occurrences per day during operation, data was collected in a 56 byte data table using a data processing algorithm. This state information was classified into 4 hexadecimal codes and transmitted to the MIS by mapping the status and the fault information on the vehicle during the main line operation. Furthermore, the transmission and reception data were examined in real time between the TCS and MIS, and the implementation of the failure information screen was then displayed.

Reliability Analysis of EMU Static Inverters considering Influence of Temperature Stress Factor (온도스트레스 영향을 고려한 전동차 보조전원장치의 신뢰성분석)

  • Park, Nam-Chul;Song, Joong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.493-500
    • /
    • 2017
  • Based on the data accumulated through EMU fault management, this paper examines the reliability of old railway car parts and proposes measurements to improve safety. Subway Line 7 of the Seoul Metropolitan Rapid Transit Corporation, auxiliary power unit (Static Inverter) of the EMU second version is a core equipment to supply power to various room-service units in cars and make an effect directly on passenger satisfaction. To analyze the pattern of failure throughout the field data over a long period of time, this analysis of statistics and reliability considers the operating environment and stress factors. This statistical analysis presents the correlation between failure and the temperature stress factors related to frequent failure occurring intensively in summer. In addition, throughout the analysis of the life of the IGBT inverter, the effect of the temperature stress factor was observed before and after the repair. As a result of an analysis of the optimal operating conditions considering two variations of EMU, such as variable load and outside temperature, a difference in the cooling capacity between the optimal operating conditions and frequent failure conditions was observed. Based on this analysis, this paper suggests a way to minimize cooling capacity difference for the optimal operational conditions.

An Experimental Study on the Longitudinal Resistance Behavior of an Existing Ballastless Steel Plate Girder Bridge (기존 무도상 판형교 궤도의 종저항거동에 대한 실험)

  • Kim, Kyoungho;Hwang, Inyoung;Baek, Inchul;Choi, Sanghyun
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.327-337
    • /
    • 2018
  • Since the track of the ballastless steel plate girder bridge is connected to a main girder without a deck and a ballast, the impact generated by train passage is transferred directly to bridge main members, and it can cause frequent damage of the bridge as well as higher noise and vibration level. Applying the CWR (Continuously Welded Rail) technology can reduce this structural problems, and, to this end, it is necessary to understand the characteristics of factors influencing vehicle-track or track-bridge interaction. In this paper, experimental study results are presented for examining the longitudinal resistance characteristics of the track, including a rail fastener, a sleeper fastener, and a track skeleton, installed on a ballastless steel plate girder bridge. The experiment is conducted using a disposed bridge from service, which is transported to a laboratory. The experimental results show that the rail fastener satisfies the performance criteria of the longitudinal resistance presented in KRS TR 0014-15, and the longitudinal resistance of old and new type sleeper fasteners is higher than the values provided in the existing research. Also, the unloaded longitudinal resistance of the ballastless track is between the ballast and the concrete tracks.

PRT Application Study Using Corridor Analysis; Focused on Nan-Gok Area (축 분석법을 활용한 PRT 적용성 연구; 난곡지역을 중심으로)

  • Lee, Jin-Sun;Kim, Kyoung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.188-193
    • /
    • 2011
  • In order to solve urban transportation problems, the various alternatives are presented to the public transportation system but the master plan of construction and operation is that there is no validity. PRT unlike other public transport system, is a new transport system that can respond appropriately, to solve the traffic demand, environmental and energy problems. Meanwhile, national and international PRT system was not commercially and the actual construction and operation of the PRT in case of base research is not well established. In this paper, PRT concept was established as the new transportation system, the target area(Nan-gok area) was selected to examine the feasibility of PRT systems and the corridor analysis method has been developed to predict the PRT demand as a basic material of planning process.

A Study on Safety Evaluation Methods for Electric Multiple Units (도시철도차량의 안전진단평가 기법에 관한 연구)

  • Chung J.D.;Han S.Y;Park K.J.;Park O.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.374-377
    • /
    • 2005
  • Automobile is in charge of most transportation system in modern urban city. However, in fact, cause of problem of road state, environment, and the other reasons, urban transit system is using as Mass Transit nowadays. Nevertheless Urban transit system is considering many kind of safety fact of that system which is increasing continuously nowadays, it occurs various train accident. This paper describes 3D Dimensional Measurement(EDM testing) and tensile testing results of carbody structure for crashed EMU(Electric Multiple Units). Tensile tests were performed on two different types of specimens in order to evaluate the strength changes before and after damages, obtained from plastic deformed area and nondeformed region of the crashed EMU. And Structural analysis of EMU was performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The testing results have been used to provide the critical information for the criteria of safety diagnosis.

  • PDF

Thermal Characteristic Analysis of IPMSM for Traction Considering a Driving Pattern of Urban Railway Vehicles (도시철도차량의 운행패턴을 고려한 견인용 IPMSM의 열 특성 분석)

  • Park, Chan-Bae;Kim, Jae-Hee;Lee, Su-Gil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.431-436
    • /
    • 2014
  • In this paper, temperature change properties on the 210kW-class Interior Permanent Magnet Synchronous Motor (IPMSM) are performed with the cooling performance of a water cooling device through the thermal characteristic analysis of the IPMSM considering a real driving pattern of urban railway vehicles. First, the thermal analysis modeling of 210kW-class IPMSM, which is an alternative to the conventional induction motor, and its water cooling device is conducted. Next, the thermal characteristic analysis of the IPMSM considering a real driving pattern of urban railway vehicles is performed using 2-Dimensional FEM tool. Finally, the calculated characteristic results are analyzed. Consequently, it is confirmed that the internal temperature of the 210kW-class IPMSM may be lowered to about 42~52% by maintaining the coolant flow rate of the water cooling device (Cross sectional shape of the pipe has 220mm width and 10mm height) for 0.2kg/s level.

Fatigue Strength Evaluation of the Aluminum Car body of Urban Transit Unit by Large Scale Dynamic Load Test (도시철도차량 알루미늄 차체의 동적 하중 시험에 의한 피로 강도 평가)

  • Seo, Sung-Il;Park, Choon-Soo;Shin, Byung-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1051-1055
    • /
    • 2003
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Structural integrity assessment for the carbody by static load test has been performed up to date. In this study, to evaluate fatigue strength of the aluminum carbody of urban transit unit. a testing method to simulate dynamic loading condition was proposed and the fatigue strength of the carbody was evaluated. The dynamic load test results showed that the alternating stress ranges were different from the estimated ranges based on the static test results. Excessive stress ranges at the center are thought to come from the flexible motion of the carbody. published fatigue test data for aluminum components, but variation of alternating acceleration along the length due to flexibility of carbody yielded unexpected results. Because fatigue strength based on the static test results may be overestimated at the center, modification of testing method is necessary.

  • PDF

Emergency Evacuation Scenario Study of Urban Metro Vehicle Running on Elevated Guideway (도시철도차량의 고가선로 비상대피 시나리오 분석)

  • Kim, Young-Sang;Maeng, Hee-Young;Wang, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2012
  • There have been recently introduced new types of urban metro vehicles called LRT (Light Rail Transit) running on elevated guideway such as Uijeongbu VAL(which stands for V$\acute{e}$hicule Automatique L$\acute{e}$ger: Automatic Light Rail Vehicle) system, Yong-In LIM(Linear Induction Motor) system, Incheon international airport MAGLEV(Magnetic Levitated Vehicle) system and Daegu monorail system. Most of accidents by the vehicles are bound to happen on elevated guideway. Therefore, it is of vital importance to analyze hazards related to vehicles running on elevated guideway and study emergency evacuation scenarios applicable in case of accidents on elevated guideway so as to secure the safety of the new types of urban metro vehicles. In this study, FTA(Fault Tree Analysis) model was developed to identify all possible hazards, and all possible evacuation scenarios were studied. It was also confirmed that each hazard can be corresponded to one or more evacuation scenarios. This result shows that passengers can be evacuated according to one of the scenarios identified in this study in case of an accident of "Train Stranded on Elevated Guideway".

Evaluation Standards to Diagnosis Cables in Urban Railway Vehicles (도시철도차량 전선의 열화진단 평가기준)

  • Lim, Jea-Yoon;Lee, Jong-Pil;Lee, Dae-Jong;Ji, Pyeong-Shik;Kang, Seong-Hwa;Kim, Hyung-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.268-274
    • /
    • 2010
  • Urban rail transit brings the benefits of various aspects of society. With the advent of fast and large trains, however, risk and scale of accidents have increased. Despite the fact that there is various safety features built into the modern metros, train faults happen from time to time. Especially, as urban railway vehicles in Korea have become deterioration rapidly, more advanced diagnosis methods are required to prevent various accidents. In this paper, we present diagnosis method for electrical wires to guarantee secure driving and authenticity more accurately in urban railway vehicles. Although there are kinds of conventional methods based on insulation resistance measurement and withstand test, it is extremely difficult to effectively diagnose obsolete equipments such as electrical wires and cables not new ones. This study is focused on development of diagnosis method and establishment of evaluation standard for electrical wires in urban railway vehicles.

A Study on the Effect of Changes in Chevron Rubber Characteristics on the Vibrational Ride Comfort Level of a Subway Vehicle (도시철도차량 세브론 고무 특성 변화가 진동승차감 레벨에 미치는 영향 연구)

  • Park, Nam Cheol;Koo, Jeong Seo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2016
  • The suspension system of a subway vehicle is composed of $1^{st}$ and $2^{nd}$ springs. The suspension system is the most important parameter in determining the vibration ride comfort. If the $1^{st}$ suspension spring is designed as a spring with strong stiffness to improve the running stability at high speed, it causes vehicle vibrations. In this paper, by testing and analyzing changes of the characteristics of Chevron springs, which have been the primary suspension springs used for about 20 years, we study how changing the characteristics affects vehicle acceleration and ride comfort. The lateral and longitudinal vibrational ride comfort index levels were lower than the vertical ones. Therefore, as increasing the stiffness of Chevron springs has the greatest effect on the vertical vibrational ride comfort index level, a countermeasure for vertical vibration reduction is needed when the stiffness increases owing to aging. Finally, maintenance guidelines, including the replacement time for the Chevron rubber, were proposed based on these findings.