• Title/Summary/Keyword: 도시수문학

Search Result 59, Processing Time 0.02 seconds

An Analysis on Application Effect of LID Techniques based on SWMM Model for Oncheon Basin by Dong (SWMM 모형을 이용한 온천천 유역 동별 LID 기법 적용 효과 분석)

  • Baek, Jong seok;Kim, Mi eun;Kim, Jae moon;Lee, Sang jin;Shin, Hyun suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.456-456
    • /
    • 2015
  • 최근 집중호우 및 돌발홍수로 인한 물관련 피해가 늘어감에 따라 도시화된 유역의 물관리 연구에 많은 초점이 모아지고 있다. 도시 유역의 물순환에 대한 하나의 해결방법으로 각광받고 있는 LID(Low Impact Development)에 관한 많은 연구가 이루어지고 있다. 본 연구에서는 법정행정구역도를 따라 온천천 유역을 각 동별로 나누어 LID를 설치하였을 때 적용 효과가 가시적으로 나타나는 소유역을 확인하기 위하여 SWMM 모형을 통해 시뮬레이션을 실시하였다. LID 요소기술로는 토지피복에 따라 주택지에는 옥상녹화, 도로에는 투수성포장을 설치하여 각 동별로 LID 적용 전 후에 대한 유출량, 침투량, 첨두유량, 유출계수 등을 비교 및 분석하는 연구를 수행하였다. 온천천 유역 14개 동에 대한 분석을 실시한 결과, 유출량 감소율의 경우 수민동(85.24%), 거제동(83.23%), 명장동(82.81%), 침투량 증가율은 수민동(162.8%), 안락동(105.1%), 복산동(71.03%) 순으로 하천 주변의 거주지가 밀집된 지역에 가시적인 효과가 나타났으며, 첨두유량 감소율은 청룡동(81.82%), 장전동(80.37%) 부곡동(79.39%) 순으로 소유역의 경사가 급한 지형에 효과가 좋은 것으로 나타났다. 유출계수 감소율은 유출량 감소율의 경우와 마찬가지로 나타났다. 도시 유역에 보다 나은 물순환을 위하여 LID 요소기술을 설치할 때 저감시키거나 증가시키려는 매개변수를 확실히 선정하는 것이 LID 효과를 극대화 할 수 있다는 점을 확인하였다.

  • PDF

Assessment of Hydrological Impact by Long-Term Land Cover Change using WMS HEC-1 Model in Gyeongan-cheon Watershed (WMS HEC-1 모형을 이용한 경안천 유역의 경년 수문변화 분석)

  • Lee, Jun-Woo;Kwon, Hyung-Joong;Shin, Sha-Chul;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.107-118
    • /
    • 2003
  • The purpose of this study is to assess the hydrological impact on a watershed from long-term land cover changes. Gyeongan-cheon watershed($558.2km^2$) was selected and WMS(watershed modeling system) HEC-1 model was adopted as an evaluation tool. To identify land cover changes, five Landsat images(1980/2/15, 1986/4/15, 1990/4/26, 1996/4/26, 2000/5/17) were selected and analyzed using maximum likelihood method. As a result, urban areas have increased by 5.6% and forest areas have decreased by 6.1% between 1980 and 2000. SCS curve number increased by 9.8. To determine model parameters and evaluate HEC-1 model, five storm events(1998/5/2, 1998/8/23, 1998/9/30, 1999/5/3, 2000/7/29) were used. The simulated stream flow agreed well with the observed one with relative errors ranging from 9% to 36%. For 254 mm daily rainfall of 30 years frequency, due to the increase of urban areas peak flow increased by $455m^3/sec$ and the time of peak flow reduced about four hours for 20 years land cover changes.

  • PDF

A Study on Changes in Habitat Enviroment of Wild Birds in Urban Rivers according to Climate Change - A Case Study of Tancheon Ecological and Landscape Conservation Area - (기후변화에 따른 도시하천의 야생조류 서식환경 변화 연구 - 탄천 생태·경관보전지역를 사례로 -)

  • Han, Jeong-Hyeon;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.79-95
    • /
    • 2024
  • The purpose of this study was to find the changes in the habitat of wild birds caused by climate change in urban rivers and protected areas that greatly require ecological functions. In the future, this study can be used as a management index to protect the urban river ecosystem and maintain the health of sustainable urban rivers, thereby ensuring biodiversity. The Tancheon Ecological and Landscape Conservation Area, selected as a target site, has been affected by climate change. The four seasons of Korea have a distinct temperate climate, but the average annual temperature in Seoul has risen by 2.4-2.8℃ over the last 40 years. Winter temperatures tended to gradually increase. Precipitation, which was concentrated from June to August, is now changing into localized torrential rain and a uniform precipitation pattern of several months. Climate change causes irregular and unforeseen features. Climate change has been shown to have various effects on urban river ecosystems. The decrease in the area of water surface and sedimentary land impacted river shape change and has led to large-scale terrestrialization. Plants showed disturbance, and the vegetation was simplified. The emergence of national climate change indicator species, the development of foreign herbaceous plants, the change of dry land native herbaceous species, and wet intelligence vegetation were developed. Wild birds appeared in the territory of winter-summer migratory. In addition, species change and the populations of migratory birds also occurred. It was judged that fluctuations in temperature and precipitation and non-predictive characteristics affect the hydrological environment, plant ecology, and wild birds connecting with the river ecosystem. The results of this study were to analyze how climate change affects the habitat of wild birds and to develop a management index for river ecological and landscape conservation areas where environmental and ecological functions in cities operate. This study can serve as a basic study at the level of ecosystem services to improve the health of urban rivers and create a foundation for biodiversity.

An Analysis on Inundation Characteristics of Urban Watershed according to Variation in Return Period of Design Rainfall (설계 강우량의 재현빈도 변화에 따른 도시유역의 침수특성 분석)

  • Park, InHyeok;Ha, SungRyong
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.585-593
    • /
    • 2013
  • This study aims to investigate inundation characteristics such as inundated area, inundation depth according to variation in return period of design rainfall and to draw a comparison between the inundation characteristics by adapting design storm using dual-drainage model. Lidar data is used to construct terrain data with $1m{\times}1m$ resolution in Cheongju. The designed storm by return periods(10year, 30year, 50year and 200year) are acquired from Intensity Duration Frequency curve, which are distributed in 5 minutes interval using Huff's method. As a results, the inundation volume is linearly increased, but inundated area is gradually increased in accordance with swell of return period for design storm. On the other hands, as a result of calculating discharge capacity for each points, deficit of discharge capacity is not observed using designed storm of 10 year return period at every points. If the return period is increased up more than 10 years, both the deficit of discharge capacity for each PT and entire study area are enlarged drastically.

An Analysis of the Runoff Variation due to Urbanization in Cho-kyung Stream Watershed (조경천 유역의 도시화에 따른 유출 변화 추이 분석)

  • Choi, Jung-Hwa;Lee, Jeong-Ju;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.161-169
    • /
    • 2009
  • Rainfall-runoff procedures of urban area are more complicated than agricultural procedures. Extension and development of town leads to shift of the basin characteristics and it makes more difficult to use runoff models. In this study, the changes of hydrologic circumstances and the shape of hydrograph due to the urbanization in Cho-kyung river basin has been assessed which is the representative urban stream in Jeonju city. The urbanization can be classified as four typical year. The natural basin period(1924) that is before the urban development, the period of construction of Chonbuk National University campus (1963), the period of construction of residential area(1986), and urbanization process has been finally completed in 1995. The rainfall-runoff analysis has been carried out by Storm Water Management Model(SWMM) under condition of the basin characteristics and impervious area of each period. It was found that hydrologic characteristics such as river length, roughness coefficient, and coefficient of surface storage has been decreased. According to the land use change, the pervious area was decreased from 97.7% to 42%, while the impervious area was increased from 0.6% to 34%. The time of concentration was shorten from 90 minutes to 37 minutes. Along with decreasing the time of concentration, the peak discharge was increased from $4.37m^3/s$ to $111.13m^3/s$, and the runoff rate was also increased from 0.8% to 68%.

  • PDF

Meaning Structure of Green Infrastructure - A Literature Review about Definitions - (그린인프라스트럭처의 의미구조 - 기존문헌의 정의문 분석을 중심으로 -)

  • Lee, Eun-Sek;Noh, Cho-Won;Sung, Jong-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.2
    • /
    • pp.65-76
    • /
    • 2014
  • Green Infrastructure(GI) is suggested to recover urban water circulation system as a newly conceptual alternative methodology by Korean landscape field in recent years. In this context, the study considers the essential meaning of GI. The methodology of this study is literature review with 47 published papers which were peer-reviewed in international journals in the recent 5 years. These papers were collected from online database and academic archives. The main analysis targets are definition sentences about GI. The each sentences were interpreted by semantic structure between verbs and objects in the definition sentences. As the results, it figured out 5 aims('Provide', 'Improve', 'Produce', 'Conserve', 'Reduce'), 4 objects('Humanistic', 'Environmental', 'Ecological', 'Hydrological') and 3 spaces('Object space', 'Technically available spaces', 'Object or technically available spaces'). The '5 aims' connected with the elements of '4 objects' based on the '3 spaces'. The elements was connected to the '5 aims' via single form or 2~3 forms of the essential meaning networks of GI. The study provides 83 meaning networks to use landscape architecture planning and urban planning.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

A Study on Location Selection for Rainwater Circulation System Elements at a City Level - Focusing on the Application of the Environmental and Ecological Plan of a Development - (도시차원의 빗물순환체계 요소별 입지선정에 관한 연구 - 개발예정지역의 환경생태계획 적용방안을 중심으로 -)

  • Kim, Hyo-Min;Kim, Kwi-Gon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • This study focused on establishing a natural rainwater circulation system using rainwater meant for relatively large urban development projects such as a new town development. In particular, when the location selection techniques for individual elements of a natural rainwater circulation system are developed for the integrated rainwater management, changes in hydrological environment will be minimized and the natural water circulation would be restored to realize the low impact development (LID). In that case, not only the excess will be reduced but water space and green areas in a city would also increase to improve the urban sustainability. First of all, there were five elements selected for the location selection of a rainwater circulation system intended for the integrated rainwater management: rainwater collection, infiltration, filtration, retention and movement spaces. After generating these items, the location selection items and criteria were defined for each of the five elements. For a technique to apply the generated evaluation items and criteria, a grid cell analysis was conducted based m the suitability index theory, and thematic maps were overlapped through suitability assessment of each element and graded based on the suitability index. The priority areas were identified for each element. The developed technique was applied to a site where Gim-cheon Innovation City development is planned to review its feasibility and limitations. The combined score of the overlapped map for each element was separated into five levels: very low, low, moderate, high and very high. Finally, it was concluded that creating a rainwater circulation system conceptual map m the current land use plan based on the outcome of the application would be useful in building a water circulation system at the de1ailed space planning stage after environmental and ecological planning. Furthermore, we use the results of this study as a means for environment-friendly urban planning for sustainable urban development.

Effect of a Hydrologic Similarity Unit and Storm Sewer Resolution on the SWMM Model Performance (수문학적 유사단위와 우수관망의 공간정밀도가 SWMM모형 성과에 미치는 영향)

  • Ha, Sung-Ryong;Lee, Kang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.79-90
    • /
    • 2006
  • The partitioning level of a catchment becomes an issue if the calculated results from different levels show the same performance regardless of the levels. This study aims to identify the proper processing level of spatial resolution for the SWMM model application in an urban area. Using GIS overlaying technique, the division of subcatchments as a hydrologic similarity unit (HSU) is achieved with a comprehensive consideration of surface slope conditions, flow directions of storm sewers, and current land cover situation. Three surface-sewer alternatives are made on the basis of three different levels of surface divisions as well as the number of sewer connections and used as runoff simulation fields for the application of SWMM. As the result, it is found that the effect of a spatial resolution on the surface runoff results is not significant. On the other hand, the accumulated pollution load from an unit subcatchment, which is built by aggregation of several unit subcatchments consisting of various land cover conditions is reduced through the deterioration of surface spatial resolution. Although overall runoff pattern and accumulated runoff are little affected by spatial resolution, the simulated runoff from sewer outlet shows slight difference at the peak appearance time. The gap between surface pollution load accumulated and it discharged from the sewer outlet in a surface-sewer alternative during runoff period is monitored but the level of error is less than 5-10% except the lowest spatial resolution case.

  • PDF

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.