• Title/Summary/Keyword: 도시수문학

Search Result 59, Processing Time 0.024 seconds

Development of Coupled SWAT-SWMM Model (I) Model Development (SWAT-SWMM 결합모형의 개발 (I) 모형의 개발)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.589-598
    • /
    • 2004
  • From the continuous long-term rainfall-runoff standpoint, the urbanization within a watershed causes land use change due to the increase in impervious areas, the addition of manmade structures, and the changes in river environment. Therefore, rainfall-runoff characteristics changes drastically after the urbanization. Due to these reasons, there exists the demand for rainfall-runoff simulation model that can quantitatively evaluate the components of hydrologic cycle including surface runoff, river flow, and groundwater by considering urban watershed characteristics as well as natural runoff characteristics. In this study, continuous long-term rainfall-runoff simulation model SWAT-SWMM is developed by coupling semi-distributed continuous long-term rainfall-runoff simulation model SWAT with RUNOFF block of SWMM, which is frequently used in the runoff analysis of urban areas in order to consider urban watershed as well as natural watershed. The coupling of SWAT and SWMM is described with emphasis on the coupling scheme, model limitations, and the schematics of coupled model.

Landuse oriented Water Balance Analysis Method by the Hydrological Model BAGLUVA based on Soil and Vegetation (토양-식생기반의 수문모델 BAGLUVA를 적용한 토지이용별 물수지 분석 방법론)

  • Kwon, Kyung Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.98-111
    • /
    • 2015
  • Urban environmental problems such as flooding, depletion of ground water, pollution of urban streams and the heat island effect caused by urban development and climate change can be mitigated by the improvement of the urban water cycle. For the effective planning of water cycle management it is necessary to establish aerial Hydrotope Maps, with which we can estimate the status and change of the water allowance for any site. The structure of the German water balance model BAGLUVA, which is based on soil and vegetation, was analyzed and the input data and boundary condition of the model was compared with Korean data and research results. The BAGLUVA Model consists of 5 Input categories (climate, land use, topography, soil hydrology and irrigation). The structure and interconnection of these categories are analyzed and new concepts and implementation methods of topographic factor, maximum evapotranspiration ratio, effective rooting depth and Bagrov n parameter was compared and analyzed. The relation of real evapotranspiration ($ET_a$)-maximum evapotranspiration ($ET_{max}$) - precipitation (P) was via Bagrov n factor represented. The aerial and land use oriented Hydrotope Map can help us to investigate the water balance of small catchment areas and to set goals for volume of rainwater management and LID facilities effectively in the city. Further, this map is a useful tool for implementing water resource management within landscape and urban planning.

The Effect of Low Impact Development Techniques on Urban Runoff (저영향개발기법이 도시 유출에 미치는 영향)

  • Kim, Heesoo;Chung, Gunhui
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.307-316
    • /
    • 2021
  • Due to rapidly increased urbanization, impervious area has been extended and concerns about urban flooding has been increased as well. A lot of effort has been made to restore the urban water circulation. Low Impact Development (LID) technology that consist of retention, infiltration, and evapotranspiration has begun to attract attention to simulate the hydrologic phenomenon before and after development. Many researches on the technique is being actively conducted. In this study, the effect on reducing runoff in urban catchment was analyzed and evaluated by applying LID techniques using SWMM and six scenarios. A SWMM-LID model was built for the Gasan 1 rainwater pumping station basin, and Green Roof and Permeable Pavement were selected as LID techniques to be applied. As a result, the reduction effect of the permeable pavement was larger than green roof. In the future, the results could be used to design a LID facility using the characteristics of the watershed, and other urban water resource factors such as river and groundwater levels that affect each other should be considered, so that the entire system can be considered.

Hydrologically Route-based Green Infra facilities assessment Model: Focus on Bio-retention cells, Infiltration trenches, Porous Pavement System, and Vegetative Swales (수문학적 추적 기반의 GI 시설 평가 모델: 생태저류지, 침투도랑, 투수성포장, 식생수로를 대상으로)

  • Won, Jeongeun;Seo, Jiyu;Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.74-84
    • /
    • 2021
  • Active stormwater management is essential to minimize the impact of urban development and improve the hydrological cycle system. In recent years, the Low Impact Development (LID) technique for urban stormwater management is attracting attention as a reasonable alternative. The Storm Water Management Model (SWMM) is actively used in urban hydrological cycle improvement projects as it provides simulation functions for various GI (Green Infra) facilities through its LID module. However, in order to simulate GI facilities using SWMM, there are many difficulties in setting up complex watersheds and deploying GI facilities. In this study, a model that can evaluate the performance of GI facilities is proposed while implementing the core hydrological process of GI facilities. Since the proposed model operates based on hydrological routing, it can not only reflect the infiltration, storage, and evapotranspiration of GI facilities, but also quantitatively evaluate the effect of improving urban hydrological cycle by GI facilities. The applicability of the proposed model was verified by comparing the results of the proposed model with the results of SWMM. In addition, a discussion of errors occurring in the SWMM's permeable pavement system simulation is included.

Runoff of an Small Urban Area Using DEM Accuracy Analysis (DEM의 정확도 분석에 의한 도시 소유역의 유출해석)

  • Park, Jin-Hyung;Lee, Kwan-Soo;Lee, Sam-No
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • The purpose of this study is to analyze the urban hydrologic state by the use of GIS, resolution and interpolation. The determination coefficient($R^2$) and Regression Formula were derived from the contour of digital map for the accuracy, and DEM data was made by using TIN interpolation by the size of the grid. By using the observed DEM data, topographical factors were extracted from the small basin, size, the width of a basin and the slope, and were applied in the urban runoff model. Through the model, we tried to find out the most suitable runoff model in a small basin of Yosu-Munsu area. As a result of applying models to the drainage considered, the runoff hydrograph estimated by SWMM model was closer to the observed one than that estimated by ILLUDAS model. The difference between the runoff hydrograph by SWMM and the observed one is maximum error of 19%, minimum error of 5% and average error of 13%. The influence of duration in contrast to pick time is insignificant in a urban small basin. As a conclusion of this study, SWMM model was more suitable and applicable for the urban runoff model than ILLUDAS model due to its accuracy and various abilities.

  • PDF

Comparison of Nash's Instaneous Unit Hydrograph According to Shape Factor (유역의 형상계수에 따른 Nash 순간단위유량도 비교)

  • Kang, Boo-Sik;Ryu, Seung-Yeop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.415-415
    • /
    • 2011
  • 수문학 또는 하천유출은 크게 기후학적은 인자 (온도, 바람, 상대습도 등)나 지형학적 인자 (지표면 경사, 흙의 종류, 하천의 면적, 하천의 길이 등)들에 의해 결정된다. 지형학적 인자들 중인 하천의 면적 그리고 주하천의 길이에 의한 영향은 비첨두홍수량의 과 수문곡선의 모양에 크게 관여되어 있다. 일반적으로 유역형상이 좁고 주하천의 길이(유로연장)가 긴 하천의 경우 단위면적당 유출량과 시간과의 그래프에서 수문곡선은 넓고 낮은 형태 모습을 지니지만 유역의 형상이 넓고 주하천의 길이기 짧은 하천은 수문곡선이 좁고 높은 형태의 모습을 가진다. 이러한 유역형상의 차이에 따라 Horton (1932)은 유역의 면적과 주하천의 길이의 비로 형상계수 (Shape Factor)의 공식을 제시하였다. 유역면적에 비해 유로연장이 길면 형상계수가 작아지고 첨두홍수량이 작아지는 반면 유역면적에 비해 유로연장이 짧을수록 형상계수가 커져 첨두홍수량이 커지는 형상을 발견할 수 있다. 형상계수와 비첨두홍수량의 상관관계를 알아보기 위하여 상수 전용댐 안전성 대책 및 치수능력 증대 방안연구 (2008) 보고서에서 적용한 유역들을 비교하였다. 이 보고서에 있는 38개의 유역들 중에서 형상계수가 0< <1 인 유역들을 선택한 후 형상계수와 지속시간별 비첨두홍수량의 관계 그리고 유역면적과 지속시간별 비첨두홍수량의 관계를 도시하였다. 추세선에 의한 결정계수인 $R^2$ 의 값을 비교하여 형상계수와 비첨두홍수량과의 관계를 조명하였다. 또한, 형상계수에 따른 순간단위도의 첨두시간 및 첨두유량을 비교하기 위하여 유역면적이 $300m^2$내외이며, 서로 다른 형상계수를 갖는 유역을 선정하여 연구를 진행하였다. 대상유역의 관측값을 이용하여 Nash모형을 적용한 순간단위도를 산정하였으며, 형상계수에 따른 첨두시간 및 첨두유량의 비교분석을 수행하였다.

  • PDF

Hydrologic and Hydraulic Factors Affecting the Long-term Treatment Performance of an Urban Stormwater Tree Box Filter (도시 강우유출수를 처리하는 나무여과상자의 장기 처리효율에 영향을 주는 수리학적 및 수문학적 인자 연구)

  • Geronimo, Franz Kevin F.;Hong, Jungsun;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.715-721
    • /
    • 2017
  • Tree box filters, an example of bioretention systems, were compacted and versatile urban stormwater low impact development technique which allowed volume and water quality treatment performance to be adjusted based on the hydrologic, runoff quality and catchment characteristics. In this study, the overall performance of a 6 year-old tree box filter receiving parking lot stormwater runoff was evaluated. Hydrologic and hydraulic factors affecting the treatment performance of the tree box filter were also identified and investigated. Based on the results, the increase in rainfall depth caused a decrease in hydrologic and hydraulic performance of the tree box filter including volume, average flow, and peak flow reduction (r = -0.53 to -0.59; p<0.01). TSS, organics, nutrients, and total and soluble heavy metals constituents were significantly reduced by the system through media filtration, adsorption, infiltration, and evapotranspiration mechanisms employed in the tree box filter (p<0.001). This significant pollutant reduction by the tree box filter was also found to have been caused by hydrologic and hydraulic factors including volume, average flow, peak flow, hydraulic retention time (HRT) and runoff duration. These findings were especially useful in applying similarly designed tree box filter by considering tree box filter surface area to catchment area of less than 1 %.

Evaluation on the Hydrologic Effects after Applying an Infiltration Trench and a Tree Box Filter as Low Impact Development (LID) Techniques (저영향 개발기법의 침투도랑과 나무여과상자 적용 후 수문학적 효과 평가)

  • Flores, Precious Eureka D.;Maniquiz-Redillas, Marla C.;Tobio, Jevelyn Ann S.;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • In this research, the hydrologic effects between a pre-existing urban landuse and low impact development (LID) applied conditions were compared and evaluated. The infiltration trench and tree box filter that were utilized in LID represent only 1% of the catchment area that they drain. Storm event monitoring were conducted from July 2010 to July 2014 on a total of 22 storm events in both LID sites. After LID, hydrological improvement was observed as the sites exhibited a delay (lag time) or reduction in the magnitude, frequency and duration of runoff and flow peaks as the rainfall progress. In addition, the maximum irreducible peak flow reduction for infiltration trench was found to be 61% and 33% for the tree box filter when rainfall was 40 mm and 30 mm, respectively. In designing LID, it is recommended to consider the storage capacity and catchment area, as well as the amount of rainfall and runoff on the site.

Zoning Suitability Analysis to Reduce First-flush Runoff Contamination in a Separated Sewer System (분류식 하수지역의 초기 유출수 오염저감을 위한 용도지구별 적지 분석)

  • Park, In-Hyeok;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.13-27
    • /
    • 2008
  • This paper aim to reorganize zoning areas for decreasing first-flush runoff contamination in a separated sewer system via suitability analysis, and to simulate the discharge pollution loads of first-flush runoff using SWMM. For these purposes, diffuse pollution, which is accumulated on a surface and first-flush runoff flow were investigated. Suitability conditions for zoning were defined using the results of these investigation and suitable zoning areas were analyzed for the each condition. AHP analysis was conducted to establish weights of the suitability conditions. The most suitable zoning areas were analyzed via overlaying weights and suitability conditions. From the result, it was noted that the most suitable zones for detached houses & apartments are location they already occupied. Some school areas analyzed were found to be suitable as commercial centers. Some zones within the area analyzed were found to be suitable for commercial zones. From results obtained from simulation, the zone re-organization showed BOD and SS concentration to reduce from 91.2% to 0.09% ans 72.74% to 0.31% respectively.

  • PDF

A Rainfall-runoff Analysis Method of SWMM Model Considering Building Height (건물 높이를 고려한 SWMM 모형의 강우-유출해석 방법 제안)

  • Lee, Hyoungtaek;Cho, Eunsaem;Yoo, Chulsang
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2018
  • In this study, the method considering the influence of the high-rise building in urban rainfall-runoff analysis using SWMM was proposed. The method proposed in this study was to calculate the time of reaching the surface of the rainwater considering the size and height of the building, and to modify the basin width to reflect this. In the method proposed in this study, the concentration time considering the size and height of the building is calculated and based on this time the basin width is modified. The proposed method was verified with the experimental result of Isidoro et al. (2012). As a result, the proposed method was found to be valid since the simulated hydrograph was fairly identical to experimental result. In both hydrographs, it was confirmed that the change of the discharge characteristic, such as decrease of peak discharge and lag of peak time, over increasing density of the building was similar each other.