Subway is a future-oriented means of transportation that can be safely and quickly mass transport many passengers than buses and taxis. Congestion growth due to the increase of the metro users is one of the factors that hinder citizens' rights to comfortably use the subway. Accordingly, congestion prediction in the subway is one of the ways to maximize the use of passenger convenience and comfort. In this paper, we monitor the level of congestion in real time via the existing congestion on the metro using multiple regression analysis and big data processing, as well as their departure station and arrival station information More information about the transfer stations offer a personalized congestion prediction system. The accuracy of the predicted congestion shows about 81% accuracy, which is compared to the real congestion. In this paper, the proposed prediction and recommendation application will be a help to prediction of subway congestion and user convenience.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.4
/
pp.44-57
/
2019
Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.
Park, Songhee;Choi, Dojin;Bok, Kyoungsoo;Yoo, Jaesoo
The Journal of the Korea Contents Association
/
v.20
no.4
/
pp.25-37
/
2020
As social costs of traffic congestion increase, various studies are underway to predict road speed. In order to improve the accuracy of road speed prediction, unexpected traffic situations need to be considered. In this paper, we propose a road speed prediction scheme considering traffic incidents affecting road speed. We use not only the speed data of the target road but also the speed data of the connected roads to reflect the impact of the connected roads. We also analyze the amount of speed change to predict the traffic congestion caused by traffic incidents. We use the speed data of connected roads and target road with input data to predict road speed in the first place. To reduce the prediction error caused by breaking the regular road flow due to traffic incidents, we predict the final road speed by applying event weights. It is shown through various performance evaluations that the proposed method outperforms the existing methods.
The Journal of the Convergence on Culture Technology
/
v.9
no.6
/
pp.145-150
/
2023
The subway is a public transportation that many people use every day. Line 2 especially has the most crowded stations during the day. However, the risk of crush accidents is increasing due to high congestion during rush hour and this reduces the safety and comfort of passengers. Subway congestion prediction is helpful to forestall problems caused by high congestion. Therefore, this study proposes machine learning classification models that predict subway congestion during commuting time. To predict congestion in Line 2 based in machine learning, we investigate variables that affect subway congestion through previous research and collect a dataset of subway congestion on Line 2 during rush hour from PUBLIC DATA PORTAL. The proposed model is expected to establish the subway operation plane to make passengers safe and satisfied.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.11a
/
pp.344-346
/
2022
최근 자율운항기술개발이 활발하게 이루어짐에 따라 자율운항선 실증이 증가하고 있으며, 또한 자율운항선의 효율적 운용 특히 운항의 안전성을 위해 입출항 시기의 적절성 또한 중요해지고 있다. 이에 해상교통혼잡도를 예측하고자 하였고, AIS 빅데이터를 통해 선박별항적을 분석 및 분류하고자 하였다. 장기적 관점에서 PORT-MIS 선박입출항현황 데이터(호출번호, 입항일시, 출항일시, 전출항지, 차항지, 계선지)를 과거 AIS 빅데이터와 연결시켜 과거 항적 중 가장 가까운 항적을 찾고자 하였다. 그리고 당시 소요 시간을 반영하여 12개의 시간대별로 어느 시점에 어느 위치 구간에 선박들이 놓이게 될지 예측하였고, 특히 입출항 시기의 적절성에 핵심이 되는 13개로 모델링된 영역에 몇 개의 선박들이 항로를 지나는지에 따라 혼잡도(원활, 혼잡, 정체)를 구분하였다. 또한, 본 연구에서는 단기적 관점에서 실제 AIS가 수신된 후에도 유사한 항적을 검사해가며 혼잡도를 예측하고자 하였고, 이러한 장단기적 혼잡도 예측을 통해 미래 자율운항선입출항 지원 서비스의 안전과 그 적절성을 제공하고자 하였다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.295-296
/
2022
자율운항선박은 선원의 항해 조작 없이 선박 스스로 운항하는 선박을 의미한다. 자율운항선박의 운항 시 충돌 및 사고 위험도가 큰 지역은 운항 중 선박을 많이 조우하게 되는 항 내 및 연안 지역이다. 실제로 충돌사고의 85% 이상이 항 내 및 연안 지역에서 발생한다. 따라서 자율운항선의 운항 안전성 확보를 위해 항 내 및 연안 지역에서의 운항 안전성을 검토하는 것은 미래 자율운항선 항 내 운용 체계에서 중요한 역할을 하게 된다. 대양에서는 선박 자체의 운항성능이 중요하지만, 항구 입출항 시에는 타선 및 터미널등과의 상호작용이 자율운항선의 입출항 안전성과 직결된다. 따라서 본 연구에서는 자율운항선이 항구 근처에 접근하여 입출항을 위해 대기하고 있는 경우에 입출항 결정을 내릴 수 있는 결정 알고리즘을 위한 해상혼잡도를 예측하는 알고리즘을 개발하는 과정을 소개한다. 혼잡 예측 알고리즘 개발을 위해 선박의 AIS통항 데이터를 분석하여 주요 항로를 구분하고 주요 항로의 이용 빈도 및 운항 시점의 선박 집중도 및 충돌위험 상황을 파라미터로 하여 특정 시간이 지난 후의 혼잡도를 예측하는 시스템을 개발하고자 한다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.81-83
/
2023
자율운항선박은 선원의 항해 조작 없이 선박 스스로 운항하는 선박을 의미한다. 자율운항선박의 운항 시 충돌 및 사고 위험도가 큰 지역은 운항 중 선박을 많이 조우하게 되는 항 내 및 연안 지역이다. 실제로 충돌사고의 85% 이상이 항 내 및 연안 지역에서 발생한다. 따라서 자율운항선의 운항 안전성 확보를 위해 항 내 및 연안 지역에서의 운항 안전성을 검토하는 것은 미래 자율운항선 항 내 운용 체계에서 중요한 역할을 하게 된다. 대양에서는 선박 자체의 운항성능이 중요하지만, 항구 입출항 시에는 타선 및 터미널등과의 상호작용이 자율운항선의 입출항 안전성과 직결된다. 따라서 본 연구에서는 자율운항선이 항구 근처에 접근하여 입출항을 위해 대기하고 있는 경우에 입출항 결정을 내릴 수 있는 결정 알고리즘을 위한 해상혼잡도를 예측하는 알고리즘을 개발하는 과정을 소개한다. 혼잡 예측 알고리즘 개발을 위해 선박의 AIS통항데이터를 분석하여 주요 항로를 구분하고 주요 항로의 이용 빈도 및 운항 시점의 선박 집중도 및 충돌위험 상황을 파라미터로 하여 현재 시점부터 2주후 미래까지의 항로 혼잡도를 예측하고, 정확도를 제시한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.05a
/
pp.71-73
/
2015
2009년 7월 개화에서 신논현까지 서울 지하철 9호선이 개통했다. 2010년 9호선 일평균 통행량은 예측 통행량 대비 97%수준이었으나, 2013년은 110%를 달성했다. 2015년 3월 2단계구간이 개통되어 평일 평균 이용객이 15만명 정도가 더 늘어났다. 국회 자료에 따르면, 출근시간 염창역에서 당산역까지의 혼잡도가 237%로 나타났다. 이는 다른 지하철 혼잡도 2배 뛰어넘는 수치이다. 당산역에서 여의도역(234%), 여의도역에서 노량진역(212%), 노량진역에서 동작역(216%)으로 기록이 될 만큼 특정 구간의 혼잡도가 높게 나타났고 급행노선을 선호하는 인원이 많아 시간이 지날수록 정체현상이 가중되고 있다. 따라서 본 연구는 혼잡도의 주 원인인 정체현상을 감소시키고 여객 수송율을 증가시키기 위해 기존의 급행 프로세스를 변경하는 방안을 제시한다. 여기에 적용된 연구방법은 혼잡도 수준을 낮추기 위해 필요한 프로세스 설정하고 아레나 시뮬레이션 프로그램 분석을 통해 본 연구에서 제시한 방안에 대해 검증한다. 본 연구에서 제안한 방식을 통해 지하철의 혼잡도 해소에 도움을 줄 수 있을 것이다.
AI-based speed prediction studies have been conducted quite actively. However, while the importance of explainable AI is emerging, the study of interpreting and reasoning the AI-based speed predictions has not been carried out much. Therefore, in this paper, 'Explainable Deep Graph Neural Network (GNN)' is devised to analyze the speed prediction and assess the nearby road influence for reasoning the critical contributions to a given road situation. The model's output was explained by comparing the differences in output before and after masking the input values of the GNN model. Using TOPIS traffic speed data, we applied our GNN models for the major congested roads in Seoul. We verified our approach through a traffic flow simulation by adjusting the most influential nearby roads' speed and observing the congestion's relief on the road of interest accordingly. This is meaningful in that our approach can be applied to the transportation network and traffic flow can be improved by controlling specific nearby roads based on the inference results.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.33
no.4
/
pp.287-296
/
2015
Recent navigation systems provide quick guide services, based on processing real-time traffic information and past traffic information by applying predictable pattern for traffic information. However, the current pattern for traffic information predicts traffic information by processing past information that it presents an inaccuracy problem in particular circumstances(accidents and weather). So, this study presented a more precise predictive traffic information system than historical traffic data first by analyzing route search data which the drivers ask in real time for the quickest way then by grasping traffic congestion levels of the route in which future drivers are supposed to locate. First results of this study, the congested route from Yang Jae to Mapo, the analysis result shows that the accuracy of the weighted value of speed of existing commonly congested road registered an error rate of 3km/h to 18km/h, however, after applying the real predictive traffic information of this study the error rate registered only 1km/h to 5km/h. Second, in terms of quality of route as compared to the existing route which allowed for an earlier arrival to the destination up to a maximum of 9 minutes and an average of up to 3 minutes that the reliability of predictable results has been secured. Third, new method allows for the prediction of congested levels and deduces results of route searches that avoid possibly congested routes and to reflect accurate real-time data in comparison with existing route searches. Therefore, this study enabled not only the predictable gathering of information regarding traffic density through route searches, but it also made real-time quick route searches based on this mechanism that convinced that this new method will contribute to diffusing future traffic flow.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.