• Title/Summary/Keyword: 도로 혼잡도 예측

Search Result 75, Processing Time 0.022 seconds

Subway Congestion Prediction and Recommendation System using Big Data Analysis (빅데이터 분석을 이용한 지하철 혼잡도 예측 및 추천시스템)

  • Kim, Jin-su
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.289-295
    • /
    • 2016
  • Subway is a future-oriented means of transportation that can be safely and quickly mass transport many passengers than buses and taxis. Congestion growth due to the increase of the metro users is one of the factors that hinder citizens' rights to comfortably use the subway. Accordingly, congestion prediction in the subway is one of the ways to maximize the use of passenger convenience and comfort. In this paper, we monitor the level of congestion in real time via the existing congestion on the metro using multiple regression analysis and big data processing, as well as their departure station and arrival station information More information about the transfer stations offer a personalized congestion prediction system. The accuracy of the predicted congestion shows about 81% accuracy, which is compared to the real congestion. In this paper, the proposed prediction and recommendation application will be a help to prediction of subway congestion and user convenience.

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

Road Speed Prediction Scheme Considering Traffic Incidents (교통 돌발 상황을 고려한 도로 속도 예측 기법)

  • Park, Songhee;Choi, Dojin;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.4
    • /
    • pp.25-37
    • /
    • 2020
  • As social costs of traffic congestion increase, various studies are underway to predict road speed. In order to improve the accuracy of road speed prediction, unexpected traffic situations need to be considered. In this paper, we propose a road speed prediction scheme considering traffic incidents affecting road speed. We use not only the speed data of the target road but also the speed data of the connected roads to reflect the impact of the connected roads. We also analyze the amount of speed change to predict the traffic congestion caused by traffic incidents. We use the speed data of connected roads and target road with input data to predict road speed in the first place. To reduce the prediction error caused by breaking the regular road flow due to traffic incidents, we predict the final road speed by applying event weights. It is shown through various performance evaluations that the proposed method outperforms the existing methods.

Subway Line 2 Congestion Prediction During Rush Hour Based on Machine Learning (머신러닝 기반 2호선 출퇴근 시간대 지하철 역사 내 혼잡도 예측)

  • Jinyoung Jang;Chaewon Kim;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.145-150
    • /
    • 2023
  • The subway is a public transportation that many people use every day. Line 2 especially has the most crowded stations during the day. However, the risk of crush accidents is increasing due to high congestion during rush hour and this reduces the safety and comfort of passengers. Subway congestion prediction is helpful to forestall problems caused by high congestion. Therefore, this study proposes machine learning classification models that predict subway congestion during commuting time. To predict congestion in Line 2 based in machine learning, we investigate variables that affect subway congestion through previous research and collect a dataset of subway congestion on Line 2 during rush hour from PUBLIC DATA PORTAL. The proposed model is expected to establish the subway operation plane to make passengers safe and satisfied.

입출항 지원 서비스를 위한 AIS 빅데이터 기반 해상교통혼잡도 예측

  • 이서호;김세원;손준배;엄정온;이주향;김동함;윤상웅;김혜진
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.344-346
    • /
    • 2022
  • 최근 자율운항기술개발이 활발하게 이루어짐에 따라 자율운항선 실증이 증가하고 있으며, 또한 자율운항선의 효율적 운용 특히 운항의 안전성을 위해 입출항 시기의 적절성 또한 중요해지고 있다. 이에 해상교통혼잡도를 예측하고자 하였고, AIS 빅데이터를 통해 선박별항적을 분석 및 분류하고자 하였다. 장기적 관점에서 PORT-MIS 선박입출항현황 데이터(호출번호, 입항일시, 출항일시, 전출항지, 차항지, 계선지)를 과거 AIS 빅데이터와 연결시켜 과거 항적 중 가장 가까운 항적을 찾고자 하였다. 그리고 당시 소요 시간을 반영하여 12개의 시간대별로 어느 시점에 어느 위치 구간에 선박들이 놓이게 될지 예측하였고, 특히 입출항 시기의 적절성에 핵심이 되는 13개로 모델링된 영역에 몇 개의 선박들이 항로를 지나는지에 따라 혼잡도(원활, 혼잡, 정체)를 구분하였다. 또한, 본 연구에서는 단기적 관점에서 실제 AIS가 수신된 후에도 유사한 항적을 검사해가며 혼잡도를 예측하고자 하였고, 이러한 장단기적 혼잡도 예측을 통해 미래 자율운항선입출항 지원 서비스의 안전과 그 적절성을 제공하고자 하였다.

  • PDF

자율운항선박 입출항 스케쥴링을 위한 AIS 기반 해상 교통 혼잡도 예측 기법 개발

  • 김세원;이서호;손준배;엄정온;이주향;김혜진;김동함;윤상웅
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.295-296
    • /
    • 2022
  • 자율운항선박은 선원의 항해 조작 없이 선박 스스로 운항하는 선박을 의미한다. 자율운항선박의 운항 시 충돌 및 사고 위험도가 큰 지역은 운항 중 선박을 많이 조우하게 되는 항 내 및 연안 지역이다. 실제로 충돌사고의 85% 이상이 항 내 및 연안 지역에서 발생한다. 따라서 자율운항선의 운항 안전성 확보를 위해 항 내 및 연안 지역에서의 운항 안전성을 검토하는 것은 미래 자율운항선 항 내 운용 체계에서 중요한 역할을 하게 된다. 대양에서는 선박 자체의 운항성능이 중요하지만, 항구 입출항 시에는 타선 및 터미널등과의 상호작용이 자율운항선의 입출항 안전성과 직결된다. 따라서 본 연구에서는 자율운항선이 항구 근처에 접근하여 입출항을 위해 대기하고 있는 경우에 입출항 결정을 내릴 수 있는 결정 알고리즘을 위한 해상혼잡도를 예측하는 알고리즘을 개발하는 과정을 소개한다. 혼잡 예측 알고리즘 개발을 위해 선박의 AIS통항 데이터를 분석하여 주요 항로를 구분하고 주요 항로의 이용 빈도 및 운항 시점의 선박 집중도 및 충돌위험 상황을 파라미터로 하여 특정 시간이 지난 후의 혼잡도를 예측하는 시스템을 개발하고자 한다.

  • PDF

자율운항선박 입출항 지원을 위한 혼잡도 예측 기법 개발

  • 손준배;김세원;이서호;김혜진;김동함;윤상웅
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.81-83
    • /
    • 2023
  • 자율운항선박은 선원의 항해 조작 없이 선박 스스로 운항하는 선박을 의미한다. 자율운항선박의 운항 시 충돌 및 사고 위험도가 큰 지역은 운항 중 선박을 많이 조우하게 되는 항 내 및 연안 지역이다. 실제로 충돌사고의 85% 이상이 항 내 및 연안 지역에서 발생한다. 따라서 자율운항선의 운항 안전성 확보를 위해 항 내 및 연안 지역에서의 운항 안전성을 검토하는 것은 미래 자율운항선 항 내 운용 체계에서 중요한 역할을 하게 된다. 대양에서는 선박 자체의 운항성능이 중요하지만, 항구 입출항 시에는 타선 및 터미널등과의 상호작용이 자율운항선의 입출항 안전성과 직결된다. 따라서 본 연구에서는 자율운항선이 항구 근처에 접근하여 입출항을 위해 대기하고 있는 경우에 입출항 결정을 내릴 수 있는 결정 알고리즘을 위한 해상혼잡도를 예측하는 알고리즘을 개발하는 과정을 소개한다. 혼잡 예측 알고리즘 개발을 위해 선박의 AIS통항데이터를 분석하여 주요 항로를 구분하고 주요 항로의 이용 빈도 및 운항 시점의 선박 집중도 및 충돌위험 상황을 파라미터로 하여 현재 시점부터 2주후 미래까지의 항로 혼잡도를 예측하고, 정확도를 제시한다.

  • PDF

시뮬레이션을 기반으로 한 지하철 혼잡도 개선에 관한 연구

  • Kim, Sang-Pil;Yu, Jae-Gon;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.71-73
    • /
    • 2015
  • 2009년 7월 개화에서 신논현까지 서울 지하철 9호선이 개통했다. 2010년 9호선 일평균 통행량은 예측 통행량 대비 97%수준이었으나, 2013년은 110%를 달성했다. 2015년 3월 2단계구간이 개통되어 평일 평균 이용객이 15만명 정도가 더 늘어났다. 국회 자료에 따르면, 출근시간 염창역에서 당산역까지의 혼잡도가 237%로 나타났다. 이는 다른 지하철 혼잡도 2배 뛰어넘는 수치이다. 당산역에서 여의도역(234%), 여의도역에서 노량진역(212%), 노량진역에서 동작역(216%)으로 기록이 될 만큼 특정 구간의 혼잡도가 높게 나타났고 급행노선을 선호하는 인원이 많아 시간이 지날수록 정체현상이 가중되고 있다. 따라서 본 연구는 혼잡도의 주 원인인 정체현상을 감소시키고 여객 수송율을 증가시키기 위해 기존의 급행 프로세스를 변경하는 방안을 제시한다. 여기에 적용된 연구방법은 혼잡도 수준을 낮추기 위해 필요한 프로세스 설정하고 아레나 시뮬레이션 프로그램 분석을 통해 본 연구에서 제시한 방안에 대해 검증한다. 본 연구에서 제안한 방식을 통해 지하철의 혼잡도 해소에 도움을 줄 수 있을 것이다.

  • PDF

Speed Prediction and Analysis of Nearby Road Causality Using Explainable Deep Graph Neural Network (설명 가능 그래프 심층 인공신경망 기반 속도 예측 및 인근 도로 영향력 분석 기법)

  • Kim, Yoo Jin;Yoon, Young
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • AI-based speed prediction studies have been conducted quite actively. However, while the importance of explainable AI is emerging, the study of interpreting and reasoning the AI-based speed predictions has not been carried out much. Therefore, in this paper, 'Explainable Deep Graph Neural Network (GNN)' is devised to analyze the speed prediction and assess the nearby road influence for reasoning the critical contributions to a given road situation. The model's output was explained by comparing the differences in output before and after masking the input values of the GNN model. Using TOPIS traffic speed data, we applied our GNN models for the major congested roads in Seoul. We verified our approach through a traffic flow simulation by adjusting the most influential nearby roads' speed and observing the congestion's relief on the road of interest accordingly. This is meaningful in that our approach can be applied to the transportation network and traffic flow can be improved by controlling specific nearby roads based on the inference results.

A Study on Predictive Traffic Information Using Cloud Route Search (클라우드 경로탐색을 이용한 미래 교통정보 예측 방법)

  • Jun Hyun, Kim;Kee Wook, Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.287-296
    • /
    • 2015
  • Recent navigation systems provide quick guide services, based on processing real-time traffic information and past traffic information by applying predictable pattern for traffic information. However, the current pattern for traffic information predicts traffic information by processing past information that it presents an inaccuracy problem in particular circumstances(accidents and weather). So, this study presented a more precise predictive traffic information system than historical traffic data first by analyzing route search data which the drivers ask in real time for the quickest way then by grasping traffic congestion levels of the route in which future drivers are supposed to locate. First results of this study, the congested route from Yang Jae to Mapo, the analysis result shows that the accuracy of the weighted value of speed of existing commonly congested road registered an error rate of 3km/h to 18km/h, however, after applying the real predictive traffic information of this study the error rate registered only 1km/h to 5km/h. Second, in terms of quality of route as compared to the existing route which allowed for an earlier arrival to the destination up to a maximum of 9 minutes and an average of up to 3 minutes that the reliability of predictable results has been secured. Third, new method allows for the prediction of congested levels and deduces results of route searches that avoid possibly congested routes and to reflect accurate real-time data in comparison with existing route searches. Therefore, this study enabled not only the predictable gathering of information regarding traffic density through route searches, but it also made real-time quick route searches based on this mechanism that convinced that this new method will contribute to diffusing future traffic flow.