• Title/Summary/Keyword: 도로평탄성

Search Result 71, Processing Time 0.028 seconds

The Change Rate of Vehicle Fuel Consumption for Road Roughness (도로 평탄성 변화에 따른 차량 연료소모량 변화율)

  • Ko, Kwang-Ho;Yoo, In-Kyoon;Lee, Soo-Hyung;Kim, Je-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.45.1-45.1
    • /
    • 2010
  • 포장도로의 노화로 인해 도로 표면의 평탄성이 높아지면 차량 주행 시 연료소모량이 증가하는 것으로 알려져 있다. 본 연구에서는 소형/중형/대형의 3개 승용차량에 대해 3가지 평탄도의 도로에서 40~100km/h 의 정속주행 연료소모량을 측정하여 도로 평탄성의 변화에 따른 연료소모량의 변화율을 계산할 수 있었다. 시험결과, 평탄성 증가에 따라 연료소모량이 직선적으로 증가하였으며, 평탄성에 대한 l차 직선방정식으로 연료소모량을 표현할 수 있었다. 평탄성 1m/km 증가 시 연료소모량은 약 80mL/100km 정도의 비율로 증가함을 알 수 있었다. 추후 본 시험의 결과를 이용하여 도로 노화에 따른 연료소모량 증가의 정도를 추정하여 다양한 도로 복구 작업 등에 이용하여 도로에서 발생할 수 있는 사고 예방 등에 활용할 수 있을 것으로 판단된다.

  • PDF

Temperature Compensated Fiber Optic Vibration Sensors for Pavement Roughness Monitoring (도로평탄성 모니터링용 온도보상형 광섬유진동센서)

  • Kim, Ki-Soo;Yoo, In-Koon;Kim, Je-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.89.2-89.2
    • /
    • 2010
  • 고속도로에서 주행속도가 높아지게 되면, 도로의 노면 상태에 따라 차량의 안전과 쾌적한 운전자의 환경이 변화될 수 있다. 이처럼 도로의 노면 상태를 결정하는 주된 인자는 도로의 평탄성과 소성변형에 의한 노면의 요철이라고 할 수 있다. 평탄하지 못한 도로를 자동차가 고속으로 주행하게 되면, 자동차의 속도에 의한 도로와의 마찰이 발생하여 자동차에는 매우 큰 흔들림이 발생하게 된다. 또한, 도로의 경우에도 자동차의 차축과 도로면에서 발생하는 충격에 의해 미세한 진동이 발생하게 된다. 그리고 광섬유 브래그 격자(FBG)센서는 외부에서 작용하는 매우 미세한 물리량에 의한 변화의 측정이 가능한 매우 우수한 계측 센서로 사용이 가능하기 때문에 온도보상형 광섬유진동센서를 제작하였고, 이를 고속도로 포장면의 평탄성 모니터링에 활용하고자 하였다.

  • PDF

Pavement Roughness Monitoring using Fiber Optic Vibration Sensors (광섬유진동센서를 이용한 도로 평탄성 모니터링)

  • Kim, Ki-Soo;Yoo, In-Koon;Kim, Je-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.791-794
    • /
    • 2010
  • 고속도로에서 주행속도가 높아지게 되면, 도로의 노면 상태에 따라 차량의 안전과 쾌적한 운전자의 환경이 변화될 수 있다. 이처럼 도로의 노면 상태를 결정하는 주된 인자는 도로의 평탄성과 소성변형에 의한 노면의 요철이라고 할 수 있다. 평탄하지 못한 도로를 자동차가 고속으로 주행하게 되면, 자동차의 속도에 의한 도로와의 마찰이 발생하여 자동차에는 매우 큰 흔들림이 발생하게 된다. 또한, 도로의 경우에도 자동차의 차축과 도로면에서 발생하는 충격에 의해 미세한 진동이 발생하게 된다. 그리고 광섬유 브래그 격자(FBG)센서는 외부에서 작용하는 매우 미세한 물리량에 의한 변화의 측정이 가능한 매우 우수한 계측 센서로 사용이 가능하기 때문에 온도보상형 광섬유진동센서를 제작하였고, 이를 고속도로 포장면의 평탄성 모니터링에 활용하고자 하였다.

  • PDF

Comparison of Fuel Consumption Estimation for Passenger Cars (승용차 유류소모량 산정 방법의 비교 연구)

  • Yoo, In-Kyoon;Kim, Je-Won;Lee, Su-Hyeong;Ko, Kwang-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.167-175
    • /
    • 2011
  • Evaluation of fuel consumption for the various road condition and vehicle type is necessary to perform the economic analysis of road construction which is important for the efficient design and management of road. Economic analysis of road should consider the social cost which can be divided into agency cost including initial construction expense, maintenance cost, and so on, and user cost consisting of vehicle operating cost, congestion cost, etc. Since vehicle operating cost depends on the traffic volume, fuel consumption that is a major part of vehicle operating cost will change by traffic volume as well. Fuel consumption is significantly affected by vehicle speed and road condition, especially the roughness. Thus, fuel consumption should be evaluated in terms of road condition, which is not currently considered. In this study, the estimation model of fuel consumption for the passenger cars in Korea has been developed by considering the road condition. First, the relationship between vehicle speed and fuel consumption that is used to calculate the vehicle operating cost for investment evaluation of transportation facility and the initial feasibility study of road construction was investigated. Second, with the consideration of road roughness, fuel consumption of the passenger car was measured. From the measurement, it was found that fuel consumption increased by $80m{\ell}$ per 100km driving as the roughness increased by 1m/km. Therefore, it is recommended that for the economic analysis of road design and management, the fuel consumption should be a function of road roughness.

Variation of Moving Dynamic Vehicle Loads According to Surface Smoothness of Pavement Systems (도로포장 표면평탄성에 따른 주행차량의 동적 하중 변화 특성)

  • Kim, Seong-Min;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.135-144
    • /
    • 2008
  • The dynamic loads imposed by moving vehicles have variations in the magnitude due to the surface roughness of the pavement systems and the larger dynamic loads than the design loads may affect the pavement performance. This paper presents variations of the moving dynamic vehicle loads due to the pavement surface roughness. This study was performed as a basic study to apply the pay factor to the surface roughness for the improvement of pavement quality and performance. The profile data was obtained from the old and new pavements and the analysis was performed to investigate the dynamic loads when vehicles move on the pavements having those profiles. The artificial profiles were also developed to find the effects of the vehicle speed, wavelength and amplitude of the surface roughness on the dynamic vehicle loads. The increase in the load magnitude due to the surface roughness affects the stresses and strains of pavements and finally reduces the pavement life. The methodology to obtain the relationship between the surface roughness and the pavement performance was proposed in this study.

  • PDF

Evaluation of Pavement Smoothness on Optimized Rehabilitated Section (최소단면 보수지역의 평탄성 평가)

  • Park, Dae-Wook;Jin, Jung-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.123-127
    • /
    • 2010
  • In this study, the profiles of optimized rehabilitated section was measured by a lightweight inertial profiler, and pavement smoothness was evaluated. To analyze the repeatability of the used lightweight profiler, two repeatable measurements were conducted. The agreement between two repeatable measurements were evaluated by Cross-correlation function. Pavement smoothness of the optimized rehabilitated pavement section and existing area was compared in terms of International Roughness Index and Profilograh Index. In general, the pavement smoothness of the rehabilitated sections was not good compared to the existing pavement sections. The analysis results could be used for the evaluation of pavement smoothness of the optimized rehabilitated pavement sections.

The Study of the Roughness of the Pavement on the Bridge Deck and Approach Slab using a 5year(2003 to 2007) Pavement Condition Survey Data (HPMS 데이터를 이용한 고속도로 교량 및 뒷채움구간 평탄성 특성 연구)

  • Park, Sang-Wook;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2008
  • Using a 5 year(2003 to 2007) pavement condition survey data from the highway pavement management system(HPMS), the roughness of the bridge deck pavement was analyzed. Based on the result of this analysis, this study tried to identify the factors affecting the deterioration of the bridge deck pavement condition. The data from HPMS indicates that the roughness of the bridge deck pavement is worse than that of the general pavement on the roadbed. The worse roughness of the bridge deck pavement is caused by the settlement of approach slab as well as the surface distress on the bridge deck pavement. In order to improve effectively the roughness of the bridge deck pavement, a management system was established in which not only the regular automated pavement condition survey to check the distress of surface of the bridge deck pavement was adopted but an automated surface profiler to check the degree of settlement of approach slab was applied.

  • PDF

Development of Roughness-Model for Jointed Plain Concrete Pavements in Express Highway (고속도로 줄눈 콘크리트 포장의 평탄성 모델 개발)

  • Park, Young-Hoon;Chon, Beom-Jun;Kim, Young-Kyu;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2010
  • Roughness is the most important factor to maintain the road performance, and affects greatly on the design life in Jointed Plain Concrete pavements. Also, the factors the evaluate pavement‘s commonality is the three method such as functionality, safety and structural performance. In evaluating function of road, representative factors is the roughness, which has been used to determine maintenance time as key standard. As research for roughness is absence in pavement design. Applied roughness-model had a low-reliability in Korea. Therefore, it is needed to develop reliable model in road roughness. In this research, uniform specific is applied to distribute them after selecting the concrete pavements. Concrete pavement is divided by sections of 238. Total length of this sections has 281km and account for 16% of total road length in korean concrete pavements for selected sections. Considering the korean roughness-model, the evaluation of roughness is performed for the freezing index, average annual rainfall, condition for the base, the amount of traffic as well as spalling(%), cracking(%), age(year) at the selected section at the selected section. Also, additional sections is selected to evaluate various age which affects on the roughness. As a result of the analysis, it showed that spalling(%), cracking(%), age(year), and the condition of the base affected road roughness. When the correlation with the road roughness was analyzed, the reliable model for road roughness was proposed, and the ratio that can explain road roughness was R2-68.8% and P value-0 which is statistically meaningful.