• Title/Summary/Keyword: 도로선형 설계

Search Result 201, Processing Time 0.019 seconds

Reliability-Based Design of Sight Distance, a Revisit (신뢰성을 고려한 도로 시거 설계의 제고)

  • Lee, Seul-Gi;Lee, Yong-Jae;Kim, Sang-Gi
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.1 s.87
    • /
    • pp.121-131
    • /
    • 2006
  • Considering characteristics of drivers and vehicles with proper and reliable ways in highway design Procedures can ensure high level of highway safety. However, it is almost impossible to take into account all factors of drivers and vehicles influencing on the highway safety because of their uncertain and random nature. To detour the dead-end, the nature are usually assumed as simple homogeneous and deterministic one. Although the restricted assumption makes the system simple, it can produce serious problems due to lack of considering variability in the system. This paper develops a reliability-based method for determining stopping sight distance(SSD) and intersection sight distance (ISD), which are crucial elements in highway alignment design. In the study, Hasofer-Lind method is adopted. which is a well-known first-order second moment reliability method (AFOSM) The results in this study show that if mean, variance, and distribution of a particular driver-vehicle parameter are known, more reliable sight distances can be applied in highway design procedures because we can reflect uncertainties and randomness. Thus, the Probabilistic method could be adopted in designing the sight distance(s) with the desired reliability level.

Prediction of Resilient Deformation and Stress-Dependent Behaviors on Geomaterials in Pavement Foundation (도로기초 지반재료의 회복변형 및 응력의존 예측)

  • Park, Seong-Wan;Hwang, Kyu-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.63-74
    • /
    • 2008
  • Resilient deformation characteristics on unbound pavement materials have been adopted for design and nonlinear analysis of pavement structure under traffic loadings. However, relatively few studies have been done on the nonlinear resilient behavior of unbound pavement materials in Korea. In addition, only the limited information is available for estimating the resilient modulus values on unbound materials. In this study, a laboratory resilient-deformation test under repeated loadings is performed in order to fud a proper constitutive model that correlates the resilient modulus with stress state from field condition. Finally, a finite element analysis is conducted for evaluating the nonlinear characteristics of unbound materials. and the pavement performance respectively.

  • PDF

Development of Eco driving Simulator Module for Economical Driving (경제적 주행을 위한 친환경 주행 시뮬레이터 모듈 개발)

  • Chung, Sung-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.151-160
    • /
    • 2009
  • The aim of this study is to propose economical driving speed index which those are geometric road status; assess the levels of which those cost-benefit of driving energy consumption and emission; are search road safety design and operational technology for driving simulator. For the objective, we analyzed the current status of driving energy consumption and driving scenarios by the road alignments, and reviewed driving and technical specifications by the geometric types of road according to the implementation, and extended completion. Throughout the result of this study, diverse related driving information provision service, efficiently navigation driving module is expected to be implemented in the national highway design system.

Estimating Design Hour Factor Using Permanent Survey (상시 교통량 자료를 이용한 설계시간계수 추정)

  • Ha, Jung Ah;Kim, Sung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.155-162
    • /
    • 2008
  • This study shows how to estimate the design hour factor when the counting stations don't have all of the hourly volumes such as in a coverage survey. A coverage survey records traffic volume from 1 to 5 times in a year so it lacks the detailed information to calculate the design hour factor. This study used the traffic volumes of permanent surveys to estimate the design hour factor in coverage surveys using correlation and regression analysis. A total 7 independent variables are used : the coefficient of variance of hourly volume, standard deviation of hourly volume, peak hour volume, AADT, heavy traffic volume proprotion, day time traffic volume proportion and D factor. All of variables are plotted on a curve, so it must use non-linear regression to analyze the data. As a result the coefficient of determination and MAE are good at logarith model using AADT.

Design Route Analysis of Dangerous Road for Traffic Accident using GIS (GIS를 이용한 사고 위험도로의 설계노선 분석)

  • Lee, Kye-Dong;Jung, Sung-Heuk;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.591-598
    • /
    • 2008
  • Recently, the government has improvement projects of dangerous road for the site that has very high accident rate due to bad geometric structures of the road. Although, route selecting of the road is a basic and important process, but the process of route selecting must consider the technical, safety and environment factor together. Also, the technology for the 3-dimensional terrain model can be used as an important factor in planning and designing for selecting alternative route projects. In the course of experimenting with the 3-dimensional topography generated by the combination of the digital map and drawing of route, the technology as been developed to offer the multi-dimensional access to the potential construction sites from the nearby main roads. This 3-dimensional digital elevation model has made it possible to make various terrain analysis base on GIS, which provides real-time virtual access to the designated construction sites for development planning and construction projects. Therefore, this study presents a reasonable plan for route selecting from some alternative routes through subjective evaluation and classify the methods linked basic design of road construction.

Algorithm-based Railway Tunnel BIM Design Considering Railway Alignment (철도 선형을 고려한 알고리즘 기반의 철도 터널 BIM 설계 방안)

  • Choi, Hyung-Lae;Jang, Kyung-Soo;Kim, Hyouk;Lee, Myeng-Ho;Park, Min-Sang
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • In process of creating BIM model for tunnel, many user use still CAD, so the workflow for BIM design is not perfect. Therefore, in this paper, we proposes a method to automatically create BIM model without converting 2D drawings in tunnel design. It can allow engineers to design BIM-based tunnel with maximum use of linear information and modify the BIM model whenever there is changed linear information. To do this, we use Dynamo, which can reduce the time required for creating and modifying BIM models during design changes, saving time wasted for BIM conversion design.

A Study On Context Sensitive Highway Design Based On Improved Operating Speed Prediction Methods in National Roads (환경 친화적 도로 설계를 위한 기초 연구 (노선대 지형 및 지역 요소를 고려한 일반국도 주행속도 예측 모형))

  • Kim, Sang-Youp;Choi, Jai-Sung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.17-33
    • /
    • 2005
  • Highway design speed is a very important design element which determines highway design level. When determining highway design speed, one would estimate it utilizing the most likelihood of design speed and vehicle operating speed relationship. Existing operating speed prediction models only include highway geometric characteristics and their impacts on speed, which usually can not consider the impact of highway design speed on surrounding roadway environment and land use pattern. If this happens, excessive highway construction cost and huge environmental impact can occur. In this research project, a new vehicle operating speed prediction model was developed which can reflect the effect of surrounding roadway environment into vehicle speed prediction. The followings are the research findings : Firstly, highway terrain types and land use pattern on national roads were classified and integrated into drivers' visual recognition pattern. This was performed using a data management software. Secondly, the developed highway terrain types and land use pattern were related to vehicle speeds and it was found that there were significant statistical differences among vehicle speed for each different terrain and land use pattern. Thirdly. the General Linear Model analysis was employed to analyze the effects of highway geometric features, terrain types, and land use patterns. For two-lane highway and four-lane highway tested in this research project, it was found that R squares were 0.67 and 0.85, respectively. Additionally an optimal highway design speed range table, based on this research project. was proposed for practical use. This table can be reliably used on South Korean national road design, but discretion is required for applying this table to other types of highways including provincial roads and municipal roads.

Development of a Fuel-Efficient Driving Strategy in Horizontal Curve Section (평면곡선부 구간에서의 연료효율적 주행전략 개발)

  • Jeong, Yangrok;Bae, Sanghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.77-84
    • /
    • 2016
  • In 2012, total GHG emissions in transport sector reached 88 Million ton CO2eq. The emissions generated in the road accounted for 94% of the transport sector. Currently, there are many efforts to operate an education and campaign for eco-driving. However study for eco-friendly vehicle control considering road alignment is limited. Therefore, the purpose of this study is to address fuel-efficient driving strategy in horizontal curve section. To fulfill the goal, designed ideal freeway horizontal curve road follows regulations about road structure. And safety speed is calculated for considering vehicle's safety on horizontal curve road. Authors composed the acceleration and deceleration scenario for each horizontal curve section and generated the speed profiles that are limited by the safety speed. Speed profiles are converted into force that horizontal curve affect to fuel consumption. Then, we calculated fuel consumption using Comprehensive Modal Emission Model. Then, we developed eco-driving strategy by selecting most fuel-efficient scenario. To validate this strategy, we selected study site and compared fuel consumption for eco and manual driving. As the result, fuel consumption when driver used eco-driving was lessened by 20.73% than that of manual driving.

Pavement Response in Flexible Pavements using Nonlinear Tire Contact Pressure and Measured Tire Contact Area (타이어의 접지 면적과 비선형 접지압력을 고려한 연성포장내의 거동 분석)

  • Jo, Myoung Hwan;Kim, Nakseok;Jeong, Jin-Hoon;Seo, Youngguk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.601-608
    • /
    • 2006
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. In this study, finite element analysis was used to identify the three-dimension states using nonlinear tire contact pressure and measured tire contact area. Measured tire contact area was quite different from the assumed tire contact area, and it resulted in different strain states under the tire. At the surface course, considering tire rib and nonlinear tire pressure, the pavement response presented accurate data compared to the predicted one. However, at the binder course, tire effects were generally negligible and it showed that the predicted pavement response was different compared to the measured one.